1.Multiparametric MRI to Predict Gleason Score Upgrading and Downgrading at Radical Prostatectomy Compared to Presurgical Biopsy
Jiahui ZHANG ; Lili XU ; Gumuyang ZHANG ; Daming ZHANG ; Xiaoxiao ZHANG ; Xin BAI ; Li CHEN ; Qianyu PENG ; Zhengyu JIN ; Hao SUN
Korean Journal of Radiology 2025;26(5):422-434
Objective:
This study investigated the value of multiparametric MRI (mpMRI) in predicting Gleason score (GS) upgrading and downgrading in radical prostatectomy (RP) compared with presurgical biopsy.
Materials and Methods:
Clinical and mpMRI data were retrospectively collected from 219 patients with prostate disease between January 2015 and December 2021. All patients underwent systematic prostate biopsy followed by RP. MpMRI included conventional diffusion-weighted and dynamic contrast-enhanced imaging. Multivariable logistic regression analysis was performed to analyze the factors associated with GS upgrading and downgrading after RP. Receiver operating characteristic curve analysis was used to estimate the area under the curve (AUC) to indicate the performance of the multivariable logistic regression models in predicting GS upgrade and downgrade after RP.
Results:
The GS after RP was upgraded, downgraded, and unchanged in 92, 43, and 84 patients, respectively. The AUCs of the clinical (percentage of positive biopsy cores [PBCs], time from biopsy to RP) and mpMRI models (prostate cancer [PCa] location, Prostate Imaging Reporting and Data System [PI-RADS] v2.1 score) for predicting GS upgrading after RP were 0.714 and 0.749, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, tPSA, PCa location, and PIRADS v2.1 score) was 0.816, which was larger than that of the clinical factors alone (P < 0.001). The AUCs of the clinical (age, percentage of PBCs, ratio of free/total PSA [F/T]) and mpMRI models (PCa diameter, PCa location, and PI-RADS v2.1 score) for predicting GS downgrading after RP were 0.749 and 0.835, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, F/T, PCa diameter, PCa location, and PI-RADS v2.1 score) was 0.883, which was larger than that of the clinical factors alone (P < 0.001).
Conclusion
Combining clinical factors and mpMRI findings can predict GS upgrade and downgrade after RP more accurately than using clinical factors alone.
2.Multiparametric MRI to Predict Gleason Score Upgrading and Downgrading at Radical Prostatectomy Compared to Presurgical Biopsy
Jiahui ZHANG ; Lili XU ; Gumuyang ZHANG ; Daming ZHANG ; Xiaoxiao ZHANG ; Xin BAI ; Li CHEN ; Qianyu PENG ; Zhengyu JIN ; Hao SUN
Korean Journal of Radiology 2025;26(5):422-434
Objective:
This study investigated the value of multiparametric MRI (mpMRI) in predicting Gleason score (GS) upgrading and downgrading in radical prostatectomy (RP) compared with presurgical biopsy.
Materials and Methods:
Clinical and mpMRI data were retrospectively collected from 219 patients with prostate disease between January 2015 and December 2021. All patients underwent systematic prostate biopsy followed by RP. MpMRI included conventional diffusion-weighted and dynamic contrast-enhanced imaging. Multivariable logistic regression analysis was performed to analyze the factors associated with GS upgrading and downgrading after RP. Receiver operating characteristic curve analysis was used to estimate the area under the curve (AUC) to indicate the performance of the multivariable logistic regression models in predicting GS upgrade and downgrade after RP.
Results:
The GS after RP was upgraded, downgraded, and unchanged in 92, 43, and 84 patients, respectively. The AUCs of the clinical (percentage of positive biopsy cores [PBCs], time from biopsy to RP) and mpMRI models (prostate cancer [PCa] location, Prostate Imaging Reporting and Data System [PI-RADS] v2.1 score) for predicting GS upgrading after RP were 0.714 and 0.749, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, tPSA, PCa location, and PIRADS v2.1 score) was 0.816, which was larger than that of the clinical factors alone (P < 0.001). The AUCs of the clinical (age, percentage of PBCs, ratio of free/total PSA [F/T]) and mpMRI models (PCa diameter, PCa location, and PI-RADS v2.1 score) for predicting GS downgrading after RP were 0.749 and 0.835, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, F/T, PCa diameter, PCa location, and PI-RADS v2.1 score) was 0.883, which was larger than that of the clinical factors alone (P < 0.001).
Conclusion
Combining clinical factors and mpMRI findings can predict GS upgrade and downgrade after RP more accurately than using clinical factors alone.
3.Multiparametric MRI to Predict Gleason Score Upgrading and Downgrading at Radical Prostatectomy Compared to Presurgical Biopsy
Jiahui ZHANG ; Lili XU ; Gumuyang ZHANG ; Daming ZHANG ; Xiaoxiao ZHANG ; Xin BAI ; Li CHEN ; Qianyu PENG ; Zhengyu JIN ; Hao SUN
Korean Journal of Radiology 2025;26(5):422-434
Objective:
This study investigated the value of multiparametric MRI (mpMRI) in predicting Gleason score (GS) upgrading and downgrading in radical prostatectomy (RP) compared with presurgical biopsy.
Materials and Methods:
Clinical and mpMRI data were retrospectively collected from 219 patients with prostate disease between January 2015 and December 2021. All patients underwent systematic prostate biopsy followed by RP. MpMRI included conventional diffusion-weighted and dynamic contrast-enhanced imaging. Multivariable logistic regression analysis was performed to analyze the factors associated with GS upgrading and downgrading after RP. Receiver operating characteristic curve analysis was used to estimate the area under the curve (AUC) to indicate the performance of the multivariable logistic regression models in predicting GS upgrade and downgrade after RP.
Results:
The GS after RP was upgraded, downgraded, and unchanged in 92, 43, and 84 patients, respectively. The AUCs of the clinical (percentage of positive biopsy cores [PBCs], time from biopsy to RP) and mpMRI models (prostate cancer [PCa] location, Prostate Imaging Reporting and Data System [PI-RADS] v2.1 score) for predicting GS upgrading after RP were 0.714 and 0.749, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, tPSA, PCa location, and PIRADS v2.1 score) was 0.816, which was larger than that of the clinical factors alone (P < 0.001). The AUCs of the clinical (age, percentage of PBCs, ratio of free/total PSA [F/T]) and mpMRI models (PCa diameter, PCa location, and PI-RADS v2.1 score) for predicting GS downgrading after RP were 0.749 and 0.835, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, F/T, PCa diameter, PCa location, and PI-RADS v2.1 score) was 0.883, which was larger than that of the clinical factors alone (P < 0.001).
Conclusion
Combining clinical factors and mpMRI findings can predict GS upgrade and downgrade after RP more accurately than using clinical factors alone.
4.Multiparametric MRI to Predict Gleason Score Upgrading and Downgrading at Radical Prostatectomy Compared to Presurgical Biopsy
Jiahui ZHANG ; Lili XU ; Gumuyang ZHANG ; Daming ZHANG ; Xiaoxiao ZHANG ; Xin BAI ; Li CHEN ; Qianyu PENG ; Zhengyu JIN ; Hao SUN
Korean Journal of Radiology 2025;26(5):422-434
Objective:
This study investigated the value of multiparametric MRI (mpMRI) in predicting Gleason score (GS) upgrading and downgrading in radical prostatectomy (RP) compared with presurgical biopsy.
Materials and Methods:
Clinical and mpMRI data were retrospectively collected from 219 patients with prostate disease between January 2015 and December 2021. All patients underwent systematic prostate biopsy followed by RP. MpMRI included conventional diffusion-weighted and dynamic contrast-enhanced imaging. Multivariable logistic regression analysis was performed to analyze the factors associated with GS upgrading and downgrading after RP. Receiver operating characteristic curve analysis was used to estimate the area under the curve (AUC) to indicate the performance of the multivariable logistic regression models in predicting GS upgrade and downgrade after RP.
Results:
The GS after RP was upgraded, downgraded, and unchanged in 92, 43, and 84 patients, respectively. The AUCs of the clinical (percentage of positive biopsy cores [PBCs], time from biopsy to RP) and mpMRI models (prostate cancer [PCa] location, Prostate Imaging Reporting and Data System [PI-RADS] v2.1 score) for predicting GS upgrading after RP were 0.714 and 0.749, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, tPSA, PCa location, and PIRADS v2.1 score) was 0.816, which was larger than that of the clinical factors alone (P < 0.001). The AUCs of the clinical (age, percentage of PBCs, ratio of free/total PSA [F/T]) and mpMRI models (PCa diameter, PCa location, and PI-RADS v2.1 score) for predicting GS downgrading after RP were 0.749 and 0.835, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, F/T, PCa diameter, PCa location, and PI-RADS v2.1 score) was 0.883, which was larger than that of the clinical factors alone (P < 0.001).
Conclusion
Combining clinical factors and mpMRI findings can predict GS upgrade and downgrade after RP more accurately than using clinical factors alone.
5.Multiparametric MRI to Predict Gleason Score Upgrading and Downgrading at Radical Prostatectomy Compared to Presurgical Biopsy
Jiahui ZHANG ; Lili XU ; Gumuyang ZHANG ; Daming ZHANG ; Xiaoxiao ZHANG ; Xin BAI ; Li CHEN ; Qianyu PENG ; Zhengyu JIN ; Hao SUN
Korean Journal of Radiology 2025;26(5):422-434
Objective:
This study investigated the value of multiparametric MRI (mpMRI) in predicting Gleason score (GS) upgrading and downgrading in radical prostatectomy (RP) compared with presurgical biopsy.
Materials and Methods:
Clinical and mpMRI data were retrospectively collected from 219 patients with prostate disease between January 2015 and December 2021. All patients underwent systematic prostate biopsy followed by RP. MpMRI included conventional diffusion-weighted and dynamic contrast-enhanced imaging. Multivariable logistic regression analysis was performed to analyze the factors associated with GS upgrading and downgrading after RP. Receiver operating characteristic curve analysis was used to estimate the area under the curve (AUC) to indicate the performance of the multivariable logistic regression models in predicting GS upgrade and downgrade after RP.
Results:
The GS after RP was upgraded, downgraded, and unchanged in 92, 43, and 84 patients, respectively. The AUCs of the clinical (percentage of positive biopsy cores [PBCs], time from biopsy to RP) and mpMRI models (prostate cancer [PCa] location, Prostate Imaging Reporting and Data System [PI-RADS] v2.1 score) for predicting GS upgrading after RP were 0.714 and 0.749, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, tPSA, PCa location, and PIRADS v2.1 score) was 0.816, which was larger than that of the clinical factors alone (P < 0.001). The AUCs of the clinical (age, percentage of PBCs, ratio of free/total PSA [F/T]) and mpMRI models (PCa diameter, PCa location, and PI-RADS v2.1 score) for predicting GS downgrading after RP were 0.749 and 0.835, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, F/T, PCa diameter, PCa location, and PI-RADS v2.1 score) was 0.883, which was larger than that of the clinical factors alone (P < 0.001).
Conclusion
Combining clinical factors and mpMRI findings can predict GS upgrade and downgrade after RP more accurately than using clinical factors alone.
6.Phenotypic plasticity and secretory heterogeneity in subpopulations derived from single cancer cell.
Zhun LIN ; Siping LIANG ; Zhe PU ; Zhengyu ZOU ; Luxuan HE ; Christopher J LYON ; Yuanqing ZHANG ; Tony Y HU ; Minhao WU
Acta Pharmaceutica Sinica B 2025;15(5):2723-2735
Single-cell analysis of phenotypic plasticity could improve the development of more effective therapeutics. Still, the development of tools to measure single-cell heterogeneity has lagged due to difficulties in manipulating and culturing single cells. Here, we describe a single-cell culture and phenotyping platform that employs a starburst microfluidic network and automatic liquid handling system to capture single cells for long-term culture and multi-dimensional analysis and quantify their clonal properties via their surface biomarker and secreted cytokine/growth factor profiles. Studies performed on this platform found that cells derived from single-cell cultures maintained phenotypic equilibria similar to their parental populations. Single-cell cultures exposed to chemotherapeutic drugs stochastically disrupted this balance to favor stem-like cells. They had enhanced expression of mRNAs and secreted factors associated with cell signaling, survival, and differentiation. This single-cell analysis approach can be extended to analyze more complex phenotypes and screen responses to therapeutic targets.
7.Effect of asiaticoside on systolic blood pressure and relaxation of isolated thoracic aorta of rats
Guoqing LU ; Hongyan SUN ; Zhengyu SUN ; Leqiang LIU ; Lei WANG ; Ningning ZHANG ; Yuhang WANG ; Yiming HE ; Jiahui JI ; Xinyue LI ; Pinfang KANG ; Bi TANG
Journal of Southern Medical University 2024;44(3):523-532
Objective To investigate the effect of asiaticoside on blood pressure and relaxation of thoracic aorta in rats and explore the underlying mechanism.Methods SD rats treated with 50 and 100 mg/kg asiaticoside by daily gavage for 2 weeks were monitored for systolic blood pressure changes,and histological changes of the thoracic aorta were evaluated using HE staining.In isolated rat endothelium-intact and endothelium-denuded thoracic aorta rings,the effects of asiaticoside on relaxation of the aortic rings were tested at baseline and following norepinephrine(NE)-and KCl-induced constriction.The vascular relaxation effect of asiaticoside was further observed in NE-stimulated endothelium-intact rat aortic rings pretreated with L-nitroarginine methyl ester,indomethacin,zinc protoporphyrin Ⅸ,tetraethyl ammonium chloride,glibenclamide,barium chloride,Iberiotoxin,4-aminopyridine,or TASK-1-IN-1.The aortic rings were treated with KCl and NE followed by increasing concentrations of CaCl2 to investigate the effect of asiaticoside on vasoconstriction induced by external calcium influx and internal calcium release.Results Asiaticoside at 50 and 100 mg/kg significantly lowered systolic blood pressure in rats without affecting the thoracic aorta histomorphology.While not obviously affecting resting aortic rings with intact endothelium,asiaticoside at 100 mg/kg induced significant relaxation of the rings constricted by KCl and NE,but its effects differed between endothelium-intact and endothelium-denuded rings.In endothelium-intact aortic rings pretreated with indomethacin,ZnPP Ⅸ,barium chloride,glyburide,TASK-1-IN-1 and 4-aminopyridine,asiaticoside did not produce significant effect on NE-induced vasoconstriction,and tetraethylammonium,Iberiotoxin and L-nitroarginine methyl ester all inhibited the relaxation effect of asiaticoside.In KCl-and NE-treated rings,asiaticoside obviously inhibited CaCl2-induced vascular contraction.Conclusion Asiaticoside induces thoracic aorta relaxation by mediating high-conductance calcium-activated potassium channel opening,promoting nitric oxide release from endothelial cells and regulating Ca2+ influx and outflow,thereby reducing systolic blood pressure in rats.
8.Activation of ALDH2 alleviates hypoxic pulmonary hypertension in mice by upregulating the SIRT1/PGC-1α signaling pathway
Lei WANG ; Fenlan BIAN ; Feiyang MA ; Shu FANG ; Zihan LING ; Mengran LIU ; Hongyan SUN ; Chengwen FU ; Shiyao NI ; Xiaoyang ZHAO ; Xinru FENG ; Zhengyu SUN ; Guoqing LU ; Pinfang KANG ; Shili WU
Journal of Southern Medical University 2024;44(10):1955-1964
Objective To investigate whether activation of mitochondrial acetal dehydrogenase 2(ALDH2)alleviates hypoxic pulmonary hypertension by regulating the SIRT1/PGC-1α signaling pathway.Methods Thirty 8-week-old C57 BL/6 mice were randomized into control,hypoxia,and hypoxia+Alda-1(an ALDH2 activator)group(n=10),and the mice in the latter two groups,along with 10 ALDH2 knockout(ALDH2-/-)mice,were exposed to hypoxia(10%O2,90%N2)with or without daily intraperitoneal injection of Alda-1 for 4 weeks.The changes in right ventricular function and pressure(RVSP)of the mice were evaluated by echocardiography and right ventricular catheter test,and pulmonary artery pressure was estimated based on RVSP.Pulmonary vascular remodeling,right ventricular injury,myocardial α-SMA expression,distal pulmonary arteriole muscle normalization,right ventricular cross-sectional area,myocardial cell hypertrophy,and right cardiac hypertrophy index were assessed with HE staining,immunofluorescence staining and WGA staining,and the expressions of ALDH2,SIRT1,PGC-1α,P16INK4A and P21CIP1 were detected.In pulmonary artery smooth muscle cells with hypoxic exposure,the effect of Alda-1 and EX527 on cell senescence and protein expressions was evaluated using β-galactose staining and Western blotting.Results The wild-type mice with hypoxic exposure showed significantly increased RVSP,right ventricular free wall thickness and myocardial expressions of P16INK4A and P21CIP1,which were effectively lowered by treatment with Alda-1 but further increased in ALDH2-/-mice.In cultured pulmonary artery smooth muscle cells,hypoxic exposure significantly increased senescent cell percentage and cellular expressions of P16INK4A and P21CIP1,which were all lowered by treatment with Alda-1,but its effect was obviously attenuated by EX527 treatment.Conclusion ALDH2 alleviates hypoxia-induced senescence of pulmonary artery smooth muscle cells by upregulating the SIRT1/PGC-1α signaling pathway to alleviate pulmonary hypertension in mice.
9.Effect of asiaticoside on systolic blood pressure and relaxation of isolated thoracic aorta of rats
Guoqing LU ; Hongyan SUN ; Zhengyu SUN ; Leqiang LIU ; Lei WANG ; Ningning ZHANG ; Yuhang WANG ; Yiming HE ; Jiahui JI ; Xinyue LI ; Pinfang KANG ; Bi TANG
Journal of Southern Medical University 2024;44(3):523-532
Objective To investigate the effect of asiaticoside on blood pressure and relaxation of thoracic aorta in rats and explore the underlying mechanism.Methods SD rats treated with 50 and 100 mg/kg asiaticoside by daily gavage for 2 weeks were monitored for systolic blood pressure changes,and histological changes of the thoracic aorta were evaluated using HE staining.In isolated rat endothelium-intact and endothelium-denuded thoracic aorta rings,the effects of asiaticoside on relaxation of the aortic rings were tested at baseline and following norepinephrine(NE)-and KCl-induced constriction.The vascular relaxation effect of asiaticoside was further observed in NE-stimulated endothelium-intact rat aortic rings pretreated with L-nitroarginine methyl ester,indomethacin,zinc protoporphyrin Ⅸ,tetraethyl ammonium chloride,glibenclamide,barium chloride,Iberiotoxin,4-aminopyridine,or TASK-1-IN-1.The aortic rings were treated with KCl and NE followed by increasing concentrations of CaCl2 to investigate the effect of asiaticoside on vasoconstriction induced by external calcium influx and internal calcium release.Results Asiaticoside at 50 and 100 mg/kg significantly lowered systolic blood pressure in rats without affecting the thoracic aorta histomorphology.While not obviously affecting resting aortic rings with intact endothelium,asiaticoside at 100 mg/kg induced significant relaxation of the rings constricted by KCl and NE,but its effects differed between endothelium-intact and endothelium-denuded rings.In endothelium-intact aortic rings pretreated with indomethacin,ZnPP Ⅸ,barium chloride,glyburide,TASK-1-IN-1 and 4-aminopyridine,asiaticoside did not produce significant effect on NE-induced vasoconstriction,and tetraethylammonium,Iberiotoxin and L-nitroarginine methyl ester all inhibited the relaxation effect of asiaticoside.In KCl-and NE-treated rings,asiaticoside obviously inhibited CaCl2-induced vascular contraction.Conclusion Asiaticoside induces thoracic aorta relaxation by mediating high-conductance calcium-activated potassium channel opening,promoting nitric oxide release from endothelial cells and regulating Ca2+ influx and outflow,thereby reducing systolic blood pressure in rats.
10.Activation of ALDH2 alleviates hypoxic pulmonary hypertension in mice by upregulating the SIRT1/PGC-1α signaling pathway
Lei WANG ; Fenlan BIAN ; Feiyang MA ; Shu FANG ; Zihan LING ; Mengran LIU ; Hongyan SUN ; Chengwen FU ; Shiyao NI ; Xiaoyang ZHAO ; Xinru FENG ; Zhengyu SUN ; Guoqing LU ; Pinfang KANG ; Shili WU
Journal of Southern Medical University 2024;44(10):1955-1964
Objective To investigate whether activation of mitochondrial acetal dehydrogenase 2(ALDH2)alleviates hypoxic pulmonary hypertension by regulating the SIRT1/PGC-1α signaling pathway.Methods Thirty 8-week-old C57 BL/6 mice were randomized into control,hypoxia,and hypoxia+Alda-1(an ALDH2 activator)group(n=10),and the mice in the latter two groups,along with 10 ALDH2 knockout(ALDH2-/-)mice,were exposed to hypoxia(10%O2,90%N2)with or without daily intraperitoneal injection of Alda-1 for 4 weeks.The changes in right ventricular function and pressure(RVSP)of the mice were evaluated by echocardiography and right ventricular catheter test,and pulmonary artery pressure was estimated based on RVSP.Pulmonary vascular remodeling,right ventricular injury,myocardial α-SMA expression,distal pulmonary arteriole muscle normalization,right ventricular cross-sectional area,myocardial cell hypertrophy,and right cardiac hypertrophy index were assessed with HE staining,immunofluorescence staining and WGA staining,and the expressions of ALDH2,SIRT1,PGC-1α,P16INK4A and P21CIP1 were detected.In pulmonary artery smooth muscle cells with hypoxic exposure,the effect of Alda-1 and EX527 on cell senescence and protein expressions was evaluated using β-galactose staining and Western blotting.Results The wild-type mice with hypoxic exposure showed significantly increased RVSP,right ventricular free wall thickness and myocardial expressions of P16INK4A and P21CIP1,which were effectively lowered by treatment with Alda-1 but further increased in ALDH2-/-mice.In cultured pulmonary artery smooth muscle cells,hypoxic exposure significantly increased senescent cell percentage and cellular expressions of P16INK4A and P21CIP1,which were all lowered by treatment with Alda-1,but its effect was obviously attenuated by EX527 treatment.Conclusion ALDH2 alleviates hypoxia-induced senescence of pulmonary artery smooth muscle cells by upregulating the SIRT1/PGC-1α signaling pathway to alleviate pulmonary hypertension in mice.

Result Analysis
Print
Save
E-mail