1.Key technologies and challenges in online adaptive radiotherapy for lung cancer.
Baiqiang DONG ; Shuohan ZHENG ; Kelly CHEN ; Xuan ZHU ; Sijuan HUANG ; Xiaobo JIANG ; Wenchao DIAO ; Hua LI ; Lecheng JIA ; Feng CHI ; Xiaoyan HUANG ; Qiwen LI ; Ming CHEN
Chinese Medical Journal 2025;138(13):1559-1567
Definitive treatment of lung cancer with radiotherapy is challenging, as respiratory motion and anatomical changes can increase the risk of severe off-target effects during radiotherapy. Online adaptive radiotherapy (ART) is an evolving approach that enables timely modification of a treatment plan during the interfraction of radiotherapy, in response to physiologic or anatomic variations, aiming to improve the dose distribution for precise targeting and delivery in lung cancer patients. The effectiveness of online ART depends on the seamless integration of multiple components: sufficient quality of linear accelerator-integrated imaging guidance, deformable image registration, automatic recontouring, and efficient quality assurance and workflow. This review summarizes the present status of online ART for lung cancer, including key technologies, as well as the challenges and areas of active research in this field.
Humans
;
Lung Neoplasms/radiotherapy*
;
Radiotherapy Planning, Computer-Assisted/methods*
2.Comparison on chemical components of Angelicae Sinensis Radix before and after wine processing by HS-GC-IMS, HS-SPME-GC-MS, and UPLC-Q-Orbitrap-MS combined with chemometrics.
Xue-Hao SUN ; Jia-Xuan CHEN ; Jia-Xin YIN ; Xiao HAN ; Zhi-Ying DOU ; Zheng LI ; Li-Ping KANG ; He-Shui YU
China Journal of Chinese Materia Medica 2025;50(14):3909-3917
The study investigated the intrinsic changes in material basis of Angelicae Sinensis Radix during wine processing by headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS), headspace-solid phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS), and ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS) combined with chemometrics. HS-GC-IMS fingerprints of Angelicae Sinensis Radix before and after wine processing were established to analyze the variation trends of volatile components and characterize volatile small-molecule substances before and after processing. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed for differentiation and difference analysis. A total of 89 volatile components in Angelicae Sinensis Radix were identified by HS-GC-IMS, including 14 unsaturated hydrocarbons, 16 aldehydes, 13 ketones, 9 alcohols, 16 esters, 6 organic acids, and 15 other compounds. HS-SPME-GC-MS detected 118 volatile components, comprising 42 unsaturated hydrocarbons, 11 aromatic compounds, 30 alcohols, 8 alkanes, 6 organic acids, 4 ketones, 7 aldehydes, 5 esters, and 5 other volatile compounds. UPLC-Q-Orbitrap-MS identified 76 non-volatile compounds. PCA revealed distinct clusters of raw and wine-processed Angelicae Sinensis Radix samples across the three detection methods. Both PCA and OPLS-DA effectively discriminated between the two groups, and 145 compounds(VIP>1) were identified as critical markers for evaluating processing quality, including 4-methyl-3-penten-2-one, ethyl 2-methylpentanoate, and 2,4-dimethyl-1,3-dioxolane detected by HS-GC-IMS, angelic acid, β-pinene, and germacrene B detected by HS-SPME-GC-MS, and L-tryptophan, licoricone, and angenomalin detected by UPLC-Q-Orbitrap-MS. In conclusion, the integration of the three detection methods with chemometrics elucidates the differences in the chemical material basis between raw and wine-processed Angelicae Sinensis Radix, providing a scientific foundation for understanding the processing mechanisms and clinical applications of wine-processed Angelicae Sinensis Radix.
Wine/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Angelica sinensis/chemistry*
;
Solid Phase Microextraction/methods*
;
Drugs, Chinese Herbal/isolation & purification*
;
Chemometrics
;
Volatile Organic Compounds/chemistry*
;
Principal Component Analysis
;
Ion Mobility Spectrometry/methods*
3.Quality evaluation of Hibisci Mutabilis Folium based on fingerprint and quantitative analysis of multi-components by single-marker method.
Ming CHEN ; Zhen-Hai YUAN ; Xuan TANG ; Dong WANG ; Zhi-Yong ZHENG ; Jing FENG ; Dai-Zhou ZHANG ; Fang WANG
China Journal of Chinese Materia Medica 2025;50(16):4619-4629
To improve the quality evaluation system of Hibisci Mutabilis Folium, this study established high performance liquid chromatography(HPLC) fingerprints of Hibisci Mutabilis Folium and evaluated the quality differences of medicinal materials from different places of production by chemometrics. Furthermore, a content measurement method of differential components was established based on quantitative analysis of multi-components by single-marker(QAMS). The fingerprints of 17 batches of Hibisci Mutabilis Folium from different places of production were constructed, with a total of 19 common peaks marked and seven components confirmed. The similarity between the sample fingerprints and the reference fingerprints ranged from 0.890 to 0.974. By utilizing principal component analysis(PCA), hierarchical cluster analysis(HCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA), the chemical patterns of fingerprints were identified. Five components that could be used to evaluate the quality differences of Hibisci Mutabilis Folium were screened, namely peak 6(quercetin 3-O-β-robinobioside), peak 7(rutin), peak 9(kaempferol-3-O-β-robinobioside), peak 10(kaempferol-3-O-rutinoside), and peak 14(tiliroside). The relative correction factors of isoquercitrin, kaempferol-3-O-β-robinobioside, kaempferol-3-O-rutinoside, kaempferol-3-O-β-D-glucoside, and tiliroside were measured with rutin as the internal reference. The QAMS method was established for the content measurement of six flavonoids, and the results showed there was no significant difference compared to the results obtained by an external standard method. In summary, the HPLC fingerprints and QAMS method established in the study, demonstrating stability and accuracy, can provide a reference for the overall quality evaluation of Hibisci Mutabilis Folium.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Principal Component Analysis
4.Augmentation of PRDX1-DOK3 interaction alleviates rheumatoid arthritis progression by suppressing plasma cell differentiation.
Wenzhen DANG ; Xiaomin WANG ; Huaying LI ; Yixuan XU ; Xinyu LI ; Siqi HUANG ; Hongru TAO ; Xiao LI ; Yulin YANG ; Lijiang XUAN ; Weilie XIAO ; Dean GUO ; Hao ZHANG ; Qiong WU ; Jie ZHENG ; Xiaoyan SHEN ; Kaixian CHEN ; Heng XU ; Yuanyuan ZHANG ; Cheng LUO
Acta Pharmaceutica Sinica B 2025;15(8):3997-4013
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation and joint damage, accompanied by the accumulation of plasma cells, which contributes to its pathogenesis. Understanding the genetic alterations occurring during plasma cell differentiation in RA can deepen our comprehension of its pathogenesis and guide the development of targeted therapeutic interventions. Here, our study elucidates the intricate molecular mechanisms underlying plasma cell differentiation by demonstrating that PRDX1 interacts with DOK3 and modulates its degradation by the autophagy-lysosome pathway. This interaction results in the inhibition of plasma cell differentiation, thereby alleviating the progression of collagen-induced arthritis. Additionally, our investigation identifies Salvianolic acid B (SAB) as a potent small molecular glue-like compound that enhances the interaction between PRDX1 and DOK3, consequently impeding the progression of collagen-induced arthritis by inhibiting plasma cell differentiation. Collectively, these findings underscore the therapeutic potential of developing chemical stabilizers for the PRDX1-DOK3 complex in suppressing plasma cell differentiation for RA treatment and establish a theoretical basis for targeting PRDX1-protein interactions as specific therapeutic targets in various diseases.
5.Expert consensus on the treatment of oral diseases in pregnant women and infants.
Jun ZHANG ; Chenchen ZHOU ; Liwei ZHENG ; Jun WANG ; Bin XIA ; Wei ZHAO ; Xi WEI ; Zhengwei HUANG ; Xu CHEN ; Shaohua GE ; Fuhua YAN ; Jian ZHOU ; Kun XUAN ; Li-An WU ; Zhengguo CAO ; Guohua YUAN ; Jin ZHAO ; Zhu CHEN ; Lei ZHANG ; Yong YOU ; Jing ZOU ; Weihua GUO
International Journal of Oral Science 2025;17(1):62-62
With the growing emphasis on maternal and child oral health, the significance of managing oral health across preconception, pregnancy, and infancy stages has become increasingly apparent. Oral health challenges extend beyond affecting maternal well-being, exerting profound influences on fetal and neonatal oral development as well as immune system maturation. This expert consensus paper, developed using a modified Delphi method, reviews current research and provides recommendations on maternal and child oral health management. It underscores the critical role of comprehensive oral assessments prior to conception, diligent oral health management throughout pregnancy, and meticulous oral hygiene practices during infancy. Effective strategies should be seamlessly integrated across the life course, encompassing preconception oral assessments, systematic dental care during pregnancy, and routine infant oral hygiene. Collaborative efforts among pediatric dentists, maternal and child health workers, and obstetricians are crucial to improving outcomes and fostering clinical research, contributing to evidence-based health management strategies.
Humans
;
Pregnancy
;
Female
;
Infant
;
Consensus
;
Mouth Diseases/therapy*
;
Pregnancy Complications/therapy*
;
Oral Health
;
Infant, Newborn
;
Delphi Technique
;
Oral Hygiene
6.Development and application on a full process disease diagnosis and treatment assistance system based on generative artificial intelligence.
Wanjie YANG ; Hao FU ; Xiangfei MENG ; Changsong LI ; Ce YU ; Xinting ZHAO ; Weifeng LI ; Wei ZHAO ; Qi WU ; Zheng CHEN ; Chao CUI ; Song GAO ; Zhen WAN ; Jing HAN ; Weikang ZHAO ; Dong HAN ; Zhongzhuo JIANG ; Weirong XING ; Mou YANG ; Xuan MIAO ; Haibai SUN ; Zhiheng XING ; Junquan ZHANG ; Lixia SHI ; Li ZHANG
Chinese Critical Care Medicine 2025;37(5):477-483
The rapid development of artificial intelligence (AI), especially generative AI (GenAI), has already brought, and will continue to bring, revolutionary changes to our daily production and life, as well as create new opportunities and challenges for diagnostic and therapeutic practices in the medical field. Haihe Hospital of Tianjin University collaborates with the National Supercomputer Center in Tianjin, Tianjin University, and other institutions to carry out research in areas such as smart healthcare, smart services, and smart management. We have conducted research and development of a full-process disease diagnosis and treatment assistance system based on GenAI in the field of smart healthcare. The development of this project is of great significance. The first goal is to upgrade and transform the hospital's information center, organically integrate it with existing information systems, and provide the necessary computing power storage support for intelligent services within the hospital. We have implemented the localized deployment of three models: Tianhe "Tianyuan", WiNGPT, and DeepSeek. The second is to create a digital avatar of the chief physician/chief physician's voice and image by integrating multimodal intelligent interaction technology. With generative intelligence as the core, this solution provides patients with a visual medical interaction solution. The third is to achieve deep adaptation between generative intelligence and the entire process of patient medical treatment. In this project, we have developed assistant tools such as intelligent inquiry, intelligent diagnosis and recognition, intelligent treatment plan generation, and intelligent assisted medical record generation to improve the safety, quality, and efficiency of the diagnosis and treatment process. This study introduces the content of a full-process disease diagnosis and treatment assistance system, aiming to provide references and insights for the digital transformation of the healthcare industry.
Artificial Intelligence
;
Humans
;
Delivery of Health Care
;
Generative Artificial Intelligence
7.Association of Longitudinal Change in Fasting Blood Glucose with Risk of Cerebral Infarction in a Patients with Diabetes.
Tai Yang LUO ; Xuan DENG ; Xue Yu CHEN ; Yu He LIU ; Shuo Hua CHEN ; Hao Ran SUN ; Zi Wei YIN ; Shou Ling WU ; Yong ZHOU ; Xing Dong ZHENG
Biomedical and Environmental Sciences 2025;38(8):926-934
OBJECTIVE:
To investigate the association between long-term glycemic control and cerebral infarction risk in patients with diabetes through a large-scale cohort study.
METHODS:
This prospective, community-based cohort study included 12,054 patients with diabetes. From 2006 to 2012, 38,272 fasting blood glucose (FBG) measurements were obtained from these participants. FBG trajectory patterns were generated using latent mixture modelling. Cox proportional hazards models were applied to assess the subsequent risk of cerebral infarction associated with different FBG trajectory patterns.
RESULTS:
At baseline, the mean age of the participants was 55.2 years. Four distinct FBG trajectories were identified based on FBG concentrations and their changes over the 6-year follow-up period. After a median follow-up of 6.9 years, 786 cerebral infarction events were recorded. Different trajectory patterns were associated with significantly varied outcome risks (Log-Rank P < 0.001). Compared with the low-stability group, Hazard Ratio ( HR) adjusted for potential confounders were 1.37 for the moderate-increasing group, 1.23 for the elevated-decreasing group, and 2.08 for the elevated-stable group.
CONCLUSION
Sustained high FBG levels were found to play a critical role in the development of ischemic stroke among patients with diabetes. Controlling FBG levels may reduce the risk of cerebral infarction.
Humans
;
Cerebral Infarction/blood*
;
Middle Aged
;
Male
;
Female
;
Blood Glucose/analysis*
;
Fasting/blood*
;
Aged
;
Prospective Studies
;
Risk Factors
;
Diabetes Mellitus/blood*
;
Adult
;
Proportional Hazards Models
8.Identification of PLATZ gene family in Camellia sinensis and expression analysis of this gene family under high temperature and drought stresses.
Xiaoshu YI ; Anru ZHENG ; Chengzhe ZHOU ; Caiyun TIAN ; Cheng ZHANG ; Yuqiong GUO ; Xuan CHEN
Chinese Journal of Biotechnology 2025;41(7):2897-2912
The plant AT-rich sequence and zinc-binding protein (PLATZ) family is composed of plant-specific zinc finger-like transcription factors, which play important roles in plant growth, development, and stress tolerance. In this study, to gain a better understanding of the PLATZ gene in C. sinensis and elucidate its response under drought and high temperature conditions, the PLATZ gene family of the C. sinensis cultivar 'Tieguanyin' was systematically identified, and a total of 12 CsPLATZ family members were identified. Expasy online and other bioinformatics tools were used to analyze the members of the PLATZ gene family in terms of protein physicochemical properties, phylogenetic relationships, cis-acting elements, gene structures, and intra- and inter-species collinearity. The results of phylogenetic analysis classified the CsPLATZ family members into 2 subfamilies. The conserved domains and gene structures of PLATZ family members within the same subfamily had a high degree of consistency, whereas a certain degree of diversity was observed among the subfamilies. Twelve PLATZ genes were unevenly distributed across 7 chromosomes of C. sinensis and the promoter regions of these genes had multiple cis-acting elements related to hormone and stress responses. The collinearity analysis showed that there were 4 pairs of duplication events in the CsPLATZ gene family, all of which were segmental duplications. Based on this gene family, C. sinensis had a closer evolutionary relationship with A. thaliana than with O. sativa. The transcriptome analysis showed that the expression levels of CsPLATZ family members varied in different tissue samples of C. sinensis. 6 genes (CsPLATZ-1, CsPLATZ-2, CsPLATZ-3, CsPLATZ-4, CsPLATZ-6, and CsPLATZ-8) with high expression in shoots, young leaves, and roots were selected for high temperature and drought stress treatments, and their expression was quantified by qRT-PCR. The results indicated that the six genes might play important roles in the response to drought stress. In addition, CsPLATZ-2 and CsPLATZ-8 might have important functions in the response to high temperature stress. The results of this study will contribute to a better understanding of the biological functions of PLATZ genes and their possible roles in the growth, development, and stress responses of C. sinensis.
Droughts
;
Camellia sinensis/physiology*
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
;
Stress, Physiological/genetics*
;
Multigene Family
;
Transcription Factors/genetics*
;
Hot Temperature
;
Genes, Plant
9.Full-length transcriptome sequencing and bioinformatics analysis of Polygonatum kingianum
Qi MI ; Yan-li ZHAO ; Ping XU ; Meng-wen YU ; Xuan ZHANG ; Zhen-hua TU ; Chun-hua LI ; Guo-wei ZHENG ; Jia CHEN
Acta Pharmaceutica Sinica 2024;59(6):1864-1872
The purpose of this study was to enrich the genomic information and provide a basis for further development and utilization of
10.Exploration of Anti-depression Mechanism of Kai-Xin-San via Regulation of Neurogenesis of Hippocampus on Chronic Unpredictable Mild Stress Induced Mice
Jiani ZHENG ; Lingxin HUANG ; Yunqing LU ; Xuan LI ; Yang CHEN ; Jiaxiang TONG ; Ziqiang ZHU ; Jinao DUAN ; Lejun LI ; Yue ZHU
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(1):19-30
Objective To explore the anti-depression mechanism of Kai-Xin-San(KXS)via regulation of neurogenesis in hippocampus of depression-like mice.Methods The extracts of KXS were prepared and the anti-depression effects of KXS were evaluated by behavioral tests on chronic unpredictable mild stress(CUMS)induced depression-like mice.Evaluating depression-like behavior in CUMS mice through sucrose preference test,forced swimming test,tail suspension test,and other methods.Neurogenesis in hippocampus were determined by immunofluorescence assay.In addition,effects of KXS on regulating nestin expression and Wnt/b-catenin signaling pathway were explored by western blotting analysis.Amounts of cortisol,corticotropin-releasing factor(CRF),adrenocorticotropic hormone(ACTH),brain-derived neurotrophic factor(BDNF)and nerve growth factor(NGF)were determined by ELISA tests.Mouse primary neural stem cells(NSC)was used to evaluate the effect of KXS on promoting its proliferation by immunofluorescence assay.In addition,effects of KXS on regulating nestin and Wnt/β-catenin signaling pathway were also explored by Western blotting analysis.Results KXS significantly ameliorated the depression-like behaviors in presence of increased sucrose preference rate and decreased immobile time of tail suspension and forced swimming.KXS significantly promoted the neurogenesis in the hippocampus and expressions of nestin,reduced the expressions of cortisol,CRF,ACTH,increased the expressions of BDNF,NGF,and regulated Wnt/β-catenin signaling pathway.KXS also promoted the proliferation of NSCs and expressions of nestin,enhanced the translocation of b-catenin into nucleus,and regulated the expressions of proteins of Wnt/β-catenin signaling pathway.Conclusion KXS promoted neurogenesis in hippocampus and regulated Wnt/β-catenin pathway,which might contribute to its antidepressant effect.

Result Analysis
Print
Save
E-mail