1.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
2.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
3.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
4.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
5.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
6.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
7.A systematic review of childhood cancer-related fatigue assessment tools based on the COSMIN guidelines.
Qian ZHAO ; Yu WANG ; Lan-Zheng BIAN
Chinese Journal of Contemporary Pediatrics 2025;27(2):184-191
OBJECTIVES:
To systematically review the methodological quality and measurement properties of childhood cancer-related fatigue assessment tools based on the consensus-based standards for the selection of health measurement instruments (COSMIN) guidelines, providing a basis for clinical practitioners to select appropriate assessment tools.
METHODS:
The databases searched included China National Knowledge Infrastructure, Wanfang Data, China Biomedical Literature, Weipu, PubMed, CINAHL, Embase, and Web of Science for studies published up to January 2024. Children under 12 years old and their primary caregivers were enrolled as subjects. Articles were screened based on inclusion criteria, and the key information regarding the assessment tools was extracted. The risk of bias checklist from the COSMIN guidelines and the quality standard rating scale were employed to evaluate measurement properties and formulate final recommendations.
RESULTS:
A total of 18 articles were included, covering 7 fatigue measurement tools, consisting of 4 specific tools and 3 generic tools tools. Methodological differences were observed in measurement properties across these scales. The Chinese Version of the Pediatric Patient-Reported Outcomes Measurement Information System (C-Ped-PROMIS) was rated as grade A recommendation due to its adequate content validity and internal consistency, while the remaining six scales were rated as grade B recommendation since their content validity was assessed as "insufficient" based on moderate-level evidence or higher.
CONCLUSIONS
The C-Ped-PROMIS scale demonstrates good reliability, validity, and cross-cultural validity as the preferred tool for measuring childhood cancer-related fatigue. The scale can serve as an auxiliary tool, and future research should focus on the applicability of various tools to enhance the effectiveness of interventions for assessing childhood cancer-related fatigue.
Humans
;
Neoplasms/complications*
;
Fatigue/diagnosis*
;
Child
8.A multicenter retrospective cohort study on the attributable risk of patients with Acinetobacter baumannii sterile body fluid infection
Lei HE ; Dao-Bin JIANG ; Ding LIU ; Xiao-Fang ZHENG ; He-Yu QIU ; Shu-Mei WU ; Xiao-Ying WU ; Jin-Lan CUI ; Shou-Jia XIE ; Qin XIA ; Li HE ; Xi-Zhao LIU ; Chang-Hui SHU ; Rong-Qin LI ; Hong-Ying TAO ; Ze-Fen CHEN
Chinese Journal of Infection Control 2024;23(1):42-48
Objective To investigate the attributable risk(AR)of Acinetobacter baumannii(AB)infection in criti-cally ill patients.Methods A multicenter retrospective cohort study was conducted among adult patients in inten-sive care unit(ICU).Patients with AB isolated from sterile body fluid and confirmed with AB infection in each cen-ter were selected as the infected group.According to the matching criteria that patients should be from the same pe-riod,in the same ICU,as well as with similar APACHE Ⅱ score(±5 points)and primary diagnosis,patients who did not infect with AB were selected as the non-infected group in a 1:2 ratio.The AR was calculated.Results The in-hospital mortality of patients with AB infection in sterile body fluid was 33.3%,and that of non-infected group was 23.1%,with no statistically significant difference between the two groups(P=0.069).The AR was 10.2%(95%CI:-2.3%-22.8%).There is no statistically significant difference in mortality between non-infected pa-tients and infected patients from whose blood,cerebrospinal fluid and other specimen sources AB were isolated(P>0.05).After infected with AB,critically ill patients with the major diagnosis of pulmonary infection had the high-est AR.There was no statistically significant difference in mortality between patients in the infected and non-infec-ted groups(P>0.05),or between other diagnostic classifications.Conclusion The prognosis of AB infection in critically ill patients is highly overestimated,but active healthcare-associated infection control for AB in the ICU should still be carried out.
9.Diagnostic value of multi-slice spiral computed tomography for acute pulmonary embolism
Zhong ZHENG ; Wen SHENG ; Jun ZHAO ; Qiong LAN
Chinese Journal of Radiological Health 2024;33(3):336-339
Objective To evaluate the value of multi-slice spiral computed tomography (CT) for diagnosing acute pulmonary embolism, and to provide a reference for the precise diagnosis of acute pulmonary embolism. Methods We enrolled a total of 102 patients pathologically diagnosed with acute pulmonary embolism from January 2019 to October 2023. All the patients underwent CT scanning of central and segmental pulmonary arteries with a GE 64-slice spiral CT scanner. The diagnostic efficacy of multi-slice CT scans for acute pulmonary embolism was evaluated with the pathological results as the gold standard. Results Of the 102 patients pathologically diagnosed with acute pulmonary embolism, multi-slice CT detected 92 cases, with an accuracy of 90.20% (92/102), including 17 cases (18.48%) of embolism in left pulmonary arteries, 31 cases (33.70%) of embolism in right pulmonary arteries, and 44 cases (47.82%) of embolism in both pulmonary arteries. Multi-slice CT visualized a total of 9905 pulmonary artery branches, and 304 of them (3.07%) had embolism, with the highest embolism rate in lobar arteries (43.89%). Conclusion Multi-slice spiral CT has high accuracy for diagnosing acute pulmonary embolism by directly and clearly visualizing embolism in the arteries of the lungs, which deserves clinical promotion.
10.Association between QRS voltages and amyloid burden in patients with cardiac amyloidosis.
Jing-Hui LI ; Changcheng LI ; Yucong ZHENG ; Kai YANG ; Yan HUANG ; Huixin ZHANG ; Xianmei LI ; Xiuyu CHEN ; Linlin DAI ; Tian LAN ; Yang SUN ; Minjie LU ; Shihua ZHAO
Chinese Medical Journal 2024;137(3):365-367

Result Analysis
Print
Save
E-mail