1.Deubiquitinase JOSD2 alleviates colitis by inhibiting inflammation via deubiquitination of IMPDH2 in macrophages.
Xin LIU ; Yi FANG ; Mincong HUANG ; Shiliang TU ; Boan ZHENG ; Hang YUAN ; Peng YU ; Mengyao LAN ; Wu LUO ; Yongqiang ZHOU ; Guorong CHEN ; Zhe SHEN ; Yi WANG ; Guang LIANG
Acta Pharmaceutica Sinica B 2025;15(2):1039-1055
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, which increases the incidence of colorectal cancer (CRC). In the pathophysiology of IBD, ubiquitination/deubiquitination plays a critical regulatory function. Josephin domain containing 2 (JOSD2), a deubiquitinating enzyme, controls cell proliferation and carcinogenesis. However, its role in IBD remains unknown. Colitis mice model developed by dextran sodium sulfate (DSS) or colon tissues from individuals with ulcerative colitis and Crohn's disease showed a significant upregulation of JOSD2 expression in the macrophages. JOSD2 deficiency exacerbated the phenotypes of DSS-induced colitis by enhancing colon inflammation. DSS-challenged mice with myeloid-specific JOSD2 deletion developed severe colitis after bone marrow transplantation. Mechanistically, JOSD2 binds to the C-terminal of inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) and preferentially cleaves K63-linked polyubiquitin chains at the K134 site, suppressing IMPDH2 activity and preventing activation of nuclear factor kappa B (NF-κB) and inflammation in macrophages. It was also shown that JOSD2 knockout significantly exacerbated increased azoxymethane (AOM)/DSS-induced CRC, and AAV6-mediated JOSD2 overexpression in macrophages prevented the development of colitis in mice. These outcomes reveal a novel role for JOSD2 in colitis through deubiquitinating IMPDH2, suggesting that targeting JOSD2 is a potential strategy for treating IBD.
2.WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling
Huang QINGLING ; Xiao YI ; Lan TING ; Lu YOUGUANG ; Huang LI ; Zheng DALI
International Journal of Oral Science 2024;16(1):85-96
Wnt signaling are critical pathway involved in organ development,tumorigenesis,and cancer progression.WNT7A,a member of the Wnt family,remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma(HNSCC).According to the Cancer Genome Atlas(TCGA),transcriptome sequencing data of HNSCC,the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues,which was validated using Real-time RT-PCR and immunohistochemistry.Unexpectedly,overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC.Instead,our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway,leading to enhanced cell proliferation,self-renewal,and resistance to apoptosis.Furthermore,in a patient-derived xenograft(PDX)tumor model,high expression of WNT7A and phosphorylated STAT3 was observed,which positively correlated with tumor progression.These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
3.Association between QRS voltages and amyloid burden in patients with cardiac amyloidosis.
Jing-Hui LI ; Changcheng LI ; Yucong ZHENG ; Kai YANG ; Yan HUANG ; Huixin ZHANG ; Xianmei LI ; Xiuyu CHEN ; Linlin DAI ; Tian LAN ; Yang SUN ; Minjie LU ; Shihua ZHAO
Chinese Medical Journal 2024;137(3):365-367
4.WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling.
Qingling HUANG ; Yi XIAO ; Ting LAN ; Youguang LU ; Li HUANG ; Dali ZHENG
International Journal of Oral Science 2024;16(1):7-7
Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of the Wnt family, remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma (HNSCC). According to the Cancer Genome Atlas (TCGA), transcriptome sequencing data of HNSCC, the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues, which was validated using Real-time RT-PCR and immunohistochemistry. Unexpectedly, overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC. Instead, our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway, leading to enhanced cell proliferation, self-renewal, and resistance to apoptosis. Furthermore, in a patient-derived xenograft (PDX) tumor model, high expression of WNT7A and phosphorylated STAT3 was observed, which positively correlated with tumor progression. These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
Animals
;
Humans
;
Squamous Cell Carcinoma of Head and Neck
;
Carcinogenesis/genetics*
;
Cell Transformation, Neoplastic
;
Wnt Signaling Pathway
;
Disease Models, Animal
;
Head and Neck Neoplasms/genetics*
;
Wnt Proteins
;
Frizzled Receptors/genetics*
;
Janus Kinase 1
;
STAT3 Transcription Factor
5.WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling
Huang QINGLING ; Xiao YI ; Lan TING ; Lu YOUGUANG ; Huang LI ; Zheng DALI
International Journal of Oral Science 2024;16(1):85-96
Wnt signaling are critical pathway involved in organ development,tumorigenesis,and cancer progression.WNT7A,a member of the Wnt family,remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma(HNSCC).According to the Cancer Genome Atlas(TCGA),transcriptome sequencing data of HNSCC,the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues,which was validated using Real-time RT-PCR and immunohistochemistry.Unexpectedly,overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC.Instead,our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway,leading to enhanced cell proliferation,self-renewal,and resistance to apoptosis.Furthermore,in a patient-derived xenograft(PDX)tumor model,high expression of WNT7A and phosphorylated STAT3 was observed,which positively correlated with tumor progression.These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
6.WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling
Huang QINGLING ; Xiao YI ; Lan TING ; Lu YOUGUANG ; Huang LI ; Zheng DALI
International Journal of Oral Science 2024;16(1):85-96
Wnt signaling are critical pathway involved in organ development,tumorigenesis,and cancer progression.WNT7A,a member of the Wnt family,remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma(HNSCC).According to the Cancer Genome Atlas(TCGA),transcriptome sequencing data of HNSCC,the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues,which was validated using Real-time RT-PCR and immunohistochemistry.Unexpectedly,overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC.Instead,our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway,leading to enhanced cell proliferation,self-renewal,and resistance to apoptosis.Furthermore,in a patient-derived xenograft(PDX)tumor model,high expression of WNT7A and phosphorylated STAT3 was observed,which positively correlated with tumor progression.These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
7.WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling
Huang QINGLING ; Xiao YI ; Lan TING ; Lu YOUGUANG ; Huang LI ; Zheng DALI
International Journal of Oral Science 2024;16(1):85-96
Wnt signaling are critical pathway involved in organ development,tumorigenesis,and cancer progression.WNT7A,a member of the Wnt family,remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma(HNSCC).According to the Cancer Genome Atlas(TCGA),transcriptome sequencing data of HNSCC,the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues,which was validated using Real-time RT-PCR and immunohistochemistry.Unexpectedly,overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC.Instead,our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway,leading to enhanced cell proliferation,self-renewal,and resistance to apoptosis.Furthermore,in a patient-derived xenograft(PDX)tumor model,high expression of WNT7A and phosphorylated STAT3 was observed,which positively correlated with tumor progression.These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
8.WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling
Huang QINGLING ; Xiao YI ; Lan TING ; Lu YOUGUANG ; Huang LI ; Zheng DALI
International Journal of Oral Science 2024;16(1):85-96
Wnt signaling are critical pathway involved in organ development,tumorigenesis,and cancer progression.WNT7A,a member of the Wnt family,remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma(HNSCC).According to the Cancer Genome Atlas(TCGA),transcriptome sequencing data of HNSCC,the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues,which was validated using Real-time RT-PCR and immunohistochemistry.Unexpectedly,overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC.Instead,our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway,leading to enhanced cell proliferation,self-renewal,and resistance to apoptosis.Furthermore,in a patient-derived xenograft(PDX)tumor model,high expression of WNT7A and phosphorylated STAT3 was observed,which positively correlated with tumor progression.These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
9.WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling
Huang QINGLING ; Xiao YI ; Lan TING ; Lu YOUGUANG ; Huang LI ; Zheng DALI
International Journal of Oral Science 2024;16(1):85-96
Wnt signaling are critical pathway involved in organ development,tumorigenesis,and cancer progression.WNT7A,a member of the Wnt family,remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma(HNSCC).According to the Cancer Genome Atlas(TCGA),transcriptome sequencing data of HNSCC,the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues,which was validated using Real-time RT-PCR and immunohistochemistry.Unexpectedly,overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC.Instead,our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway,leading to enhanced cell proliferation,self-renewal,and resistance to apoptosis.Furthermore,in a patient-derived xenograft(PDX)tumor model,high expression of WNT7A and phosphorylated STAT3 was observed,which positively correlated with tumor progression.These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
10.WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling
Huang QINGLING ; Xiao YI ; Lan TING ; Lu YOUGUANG ; Huang LI ; Zheng DALI
International Journal of Oral Science 2024;16(1):85-96
Wnt signaling are critical pathway involved in organ development,tumorigenesis,and cancer progression.WNT7A,a member of the Wnt family,remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma(HNSCC).According to the Cancer Genome Atlas(TCGA),transcriptome sequencing data of HNSCC,the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues,which was validated using Real-time RT-PCR and immunohistochemistry.Unexpectedly,overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC.Instead,our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway,leading to enhanced cell proliferation,self-renewal,and resistance to apoptosis.Furthermore,in a patient-derived xenograft(PDX)tumor model,high expression of WNT7A and phosphorylated STAT3 was observed,which positively correlated with tumor progression.These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.

Result Analysis
Print
Save
E-mail