1.Screening of Antidepressant Active Components from Curcumae Rhizoma and Its Mechanism in Regulating Nrf2/GPX4/GSH Pathway
Yonggui SONG ; Delin DUAN ; Meixizi LAI ; Yali LIU ; Zhifu AI ; Genhua ZHU ; Huanhua XU ; Qin ZHENG ; Ming YANG ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):211-221
ObjectiveTo screen and evaluate the antidepressant compounds of Curcumae Rhizoma, and explore its mechanism of regulating the nuclear factor erythroid 2-related factor 2(Nrf2)/glutathione(GSH) peroxidase 4(GPX4)/GSH pathway from an antioxidant perspective. MethodsThe antioxidant activities in vitro of 11 characteristic components from Curcumae Rhizoma, including curcumol, curgerenone, curdione, curzerene, curcumenol, curcumenone, dehydrocurdione, isocurcumenol, furanodienone, furanodiene and zederone, were detected using 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt(ABTS) radical scavenging assays. The depression in Drosophila melanogaster was induced by chronic unpredictable mild stress(CUMS), and W1118 wild-type male D. melanogaster were randomly divided into blank group, model group, curcumol group, curgerenone group, curdione group, curzerene group, curcumenol group,curcumenone group, dehydrocurdione group, isocurcumenol group, furanodienone group, furanodiene group, zederone group and fluoxetine group(10 μmol·L-1). The treatment groups received a dose of 0.1 g·L-1 of 11 characteristic components from Curcumae Rhizoma, while the blank and model groups were administered equivalent volumes of solvent. The sucrose preference test, climbing test and forced swimming test were used to evaluate the behavioral indicators of depression in D. melanogaster. Liquid chromatography-mass spectrometry(LC-MS) was used to detect the levels of 5-hydroxytryptamine(5-HT) and dopamine(DA) in the brain of D. melanogaster, and the entropy weight method was used to comprehensively evaluate neurobehavioral and neurotransmitter indicators, resulting in the identification of the antidepressant active components of Curcumae Rhizoma. In addition, a mouse depression model was established by CUMS, and C57BL/6J mice were randomly divided into blank group, model group, low and high dose groups of curzerene(0.5, 1 mg·kg-1), and fluoxetine group(10 mg·kg-1) to confirm the antidepressant effect of the optimal active ingredient by behavioral analysis. Flow cytometry was used to detect the content of reactive oxygen species(ROS) in the hippocampus of mice from each group. Enzyme-linked immunosorbent assay was used to detect the contents of adenosine triphosphate(ATP), superoxide dismutase(SOD), catalase(CAT) and GSH. Transmission electron microscope(TEM) was used to observe the effect of curzerene on the ultrastructure of mitochondria in hippocampal tissue. Western blot was performed to determine the level of Nrf2 protein, and Nrf2 inhibitor(ML385) was used to verify the relationship between the antidepressant effect of curzerene and regulation of Nrf2. Real time fluorescence quantitative polymerase chain reaction(Real-time PCR) was employed to detect the effect of curzerene on the mRNA expression level of GPX. ResultsIn vitro antioxidant experiments showed that curzerene and curgerenone exhibited the most significant ability to scavenge free radicals, and comprehensive evaluation results of entropy weight method indicated that curzerene stood out as the most promising active component. Compared with the blank group, the model group exhibited a significant decrease in sucrose preference coefficient and the number of times entering the open field center(P<0.01), as well as a significant increase in immobility time in the forced swimming and tail suspension tests(P<0.01), and the ROS content in hippocampus significantly elevated(P<0.01), while the ATP content significantly reduced(P<0.01). In the hippocampal neurons of the model group, mitochondrial cristae were disordered, with vacuolation of the inner membrane and severe damage. Nrf2 protein expression level in the model group was significantly decreased(P<0.05), and the antioxidant enzymes SOD, CAT and GSH contents were also significantly reduced(P<0.05, P<0.01), and the gene expression levels of GPX1, GPX4 and GPX7 were significantly decreased(P<0.01). Compared with the model group, the high-dose group of curzerene showed a significant increase in the sucrose preference coefficient and the number of times entering the open field center(P<0.05), as well as a significant decrease in immobility time in the forced swimming and tail suspension tests(P<0.05, P<0.01). The ROS content in the hippocampus of the high-dose group of curzerene was significantly reduced(P<0.01), while the ATP content was significantly increased(P<0.05). The neuronal mitochondrial damage in the hippocampus of the high-dose group of curzerene was alleviated, and the expression level of Nrf2 protein was significantly increased(P<0.05). The Nrf2 inhibitor ML385 reversed the improvement of curzerene on depressive behaviors in CUMS mice. The GSH content in the hippocampal neurons of the high-dose group of curzerene was significantly increased(P<0.01), while there were no significant differences in SOD and CAT contents. The expression level of GPX4 gene in the hippocampal neurons of the high-dose group of curzerene was significantly increased(P<0.05), while there were no significant differences in other GPX genes. ConclusionCurzerene is the best component with antidepressant activity in Curcumae Rhizoma. It may improve mitochondrial dysfunction to exert its antidepressant effect by regulating Nrf2 and its downstream GPX4/GSH pathway rather than CAT or SOD pathways.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Epidemiological investigation of a nosocomial varicella outbreak triggered by a herpes zoster case
LUO Xiulan ; ZHENG Yongtao ; NI Mengjiao ; LU Chao ; XU Tingyan ; WENG Jiyan ; LAI Fenhua
Journal of Preventive Medicine 2025;37(5):490-493
On August 24 2024, Xiaoshan District Center for Disease Control and Prevention, Hangzhou City, received a report of two cases of varicella infection among staff in the intensive care unit (ICU) of a hospital in its jurisdiction. The center immediately organized personnel to conduct an epidemiological investigation of the cases and their close contacts. The index case was a patient admitted to the ICU who had large areas of red rash and pustules on the chest, back, and right axilla. This case was diagnosed with herpes zoster by a dermatology consultation within the hospital. The other nine secondary cases were all nursing staff in the ICU, who were clinically diagnosed with varicella between August 21 and September 1, with an attack rate of 14.06%. All secondary varicella cases had a history of contact with the herpes zoster case and no history of varicella infection. Their varicella vaccination history was unknown. Based on the results of the on-site epidemiological and sanitary investigations, it was determined that this was an outbreak of varicella in the hospital caused by a herpes zoster case. After the last case was diagnosed, no new cases were reported within the longest incubation period (21 days), and the outbreak was declared over on September 21. Close contact with the herpes zoster case was likely the main cause of the outbreak. This highlights the need for early identification and isolation of suspected herpes zoster cases in hospitals in the future, as well as enhanced protective measures to prevent nosocomial infections.
6.Research progress on molecular mechanisms of ginsenosides in alleviating acute lung injury.
Han-Yang ZHAO ; Xun-Jiang WANG ; Qiong-Wen XUE ; Bao-Lian XU ; Xu WANG ; Shu-Sheng LAI ; Ming CHEN ; Li YANG ; Zheng-Tao WANG ; Li-Li DING
China Journal of Chinese Materia Medica 2025;50(16):4451-4470
Acute lung injury(ALI) is a critical clinical condition primarily characterized by refractory hypoxemia and infiltration of inflammatory cells in lung tissue, which can progress into a more severe form known as acute respiratory distress syndrome(ARDS). Immune cells and inflammatory cytokines play important roles in the progression of the disease. Due to its unclear pathogenesis and the lack of effective clinical treatments, ALI is associated with a high mortality rate and severely affects patients' quality of life, making the search for effective therapeutic agents particularly urgent. Ginseng Radix et Rhizoma, the dried root of the perennial herb Panax ginseng from the Araliaceae family, contains active ingredients such as saponins and polysaccharides, which possess various pharmacological effects including anti-tumor activity, immune regulation, and metabolic modulation. In recent years, studies have shown that ginsenosides exhibit notable effects in reducing inflammation, ameliorating epithelial and endothelial cell injury, and providing anticoagulant action, indicating their comprehensive role in alleviating lung injury. This review summarizes the pathogenesis of ALI and the molecular mechanisms through which ginsenosides act at different stages of ALI development. The aim is to provide a scientific reference for the development of ginsenoside-based drugs targeting ALI, as well as a theoretical basis for the clinical application of Ginseng Radix et Rhizoma in the treatment of ALI.
Ginsenosides/pharmacology*
;
Humans
;
Acute Lung Injury/immunology*
;
Animals
;
Panax/chemistry*
;
Drugs, Chinese Herbal
7.Development of oral preparations of poorly soluble drugs based on polymer supersaturated self-nanoemulsifying drug delivery technology.
Xu-Long CHEN ; Jiang-Wen SHEN ; Wei-Wei ZHA ; Jian-Yun YI ; Lin LI ; Zhang-Ting LAI ; Zheng-Gen LIAO ; Ye ZHU ; Yue-Er CHENG ; Cheng LI
China Journal of Chinese Materia Medica 2025;50(16):4471-4482
Poor water solubility is the primary obstacle preventing the development of many pharmacologically active compounds into oral preparations. Self-nanoemulsifying drug delivery systems(SNEDDS) have become a widely used strategy to enhance the oral bioavailability of poorly soluble drugs by inducing a supersaturated state, thereby improving their apparent solubility and dissolution rate. However, the supersaturated solutions formed in SNEDDS are thermodynamically unstable systems with solubility levels exceeding the crystalline equilibrium solubility, making them prone to drug precipitation in the gastrointestinal tract and ultimately hindering drug absorption. Therefore, maintaining a stable supersaturated state is crucial for the effective delivery of poorly soluble drugs. Incorporating polymers as precipitation inhibitors(PPIs) into the formulation of supersaturated self-nanoemulsifying drug delivery systems(S-SNEDDS) can inhibit drug aggregation and crystallization, thus maintaining a stable supersaturated state. This has emerged as a novel preparation strategy and a key focus in SNEDDS research. This review explores the preparation design of SNEDDS and the technical challenges involved, with a particular focus on polymer-based S-SNEDDS for enhancing the solubility and oral bioavailability of poorly soluble drugs. It further elucidates the mechanisms by which polymers participate in transmembrane transport, summarizes the principles by which polymers sustain a supersaturated state, and discusses strategies for enhancing drug absorption. Altogether, this review provides a structured framework for the development of S-SNEDDS preparations with stable quality and reduced development risk, and offers a theoretical reference for the application of S-SNEDDS technology in improving the oral bioavailability of poorly soluble drugs.
Solubility
;
Administration, Oral
;
Polymers/chemistry*
;
Drug Delivery Systems/methods*
;
Humans
;
Emulsions/chemistry*
;
Biological Availability
;
Animals
;
Pharmaceutical Preparations/administration & dosage*
8.Study on the Clinical Application Effect of Low-Field Infant MRI.
Caixian ZHENG ; Siwei XIANG ; Chang SU ; Linyi ZHANG ; Can LAI ; Tianming YUAN ; Lu ZHOU ; Yunming SHEN ; Kun ZHENG
Chinese Journal of Medical Instrumentation 2025;49(5):501-506
OBJECTIVE:
Evaluate the clinical application effect of low-field infant MRI.
METHODS:
Using literature review, expert consultation, and two rounds of Delphi to determine the evaluation index system. Then retrospectively analyze and compare the data of low-field infant MRI and high-field MRI from January 2023 to December 2024.
RESULTS:
There is a certain gap between low-field infant MRI and high-field MRI in terms of signal-to-noise ratio, image uniformity, software system reliability, scanning time, user interface friendliness and image result consistency. However, there was no difference in terms of spatial resolution and image quality. The noise, hardware system reliability, mean time between failure and the rate of examination completed without sedation are better than that of high-field MRI.
CONCLUSION
Low-field infant MRI meets needs of clinical diagnostic and has stable performance. It can be used as a routine screening tool for brain diseases near the bed.
Magnetic Resonance Imaging/methods*
;
Humans
;
Infant
;
Retrospective Studies
;
Signal-To-Noise Ratio
;
Reproducibility of Results
;
Brain Diseases/diagnostic imaging*
;
Brain/diagnostic imaging*
;
Software
9.Clinical features and sepsis-related factors in 159 patients with necrotizing soft tissue infection.
Hongmin LUO ; Xiaoyan WANG ; Xu MU ; Zeyang YAO ; Chuanwei SUN ; Lianghua MA ; Shaoyi ZHENG ; Huining BIAN ; Wen LAI
Chinese Critical Care Medicine 2025;37(9):817-821
OBJECTIVE:
To explore the clinical features of patients with necrotizing soft tissue infection (NSTI) and the related factors for sepsis, so as to provide a basis for early intervention and improvement of patients' prognosis.
METHODS:
A retrospective case series study was conducted to analyze the clinical data of NSTI patients admitted to the department of burns and wound repair surgery of Guangdong Provincial People's Hospital from October 2021 to December 2024. Demographic information, underlying diseases, infection characteristics, laboratory test results and etiological findings at admission, treatment status, occurrence of complications (including sepsis) and prognosis were collected. Univariate and multivariate Logistic regression analyses were used to identify the associated factors for sepsis in NSTI patients. Receiver operator characteristic curves (ROC curves) were plotted to evaluate the predictive value of individual and combined factors for sepsis.
RESULTS:
A total of 159 NSTI patients were enrolled, mainly middle-aged and elderly males. Most patients had comorbidities, including diabetes mellitus (110 cases, 69.2%) and hypertension (67 cases, 42.1%). The main infection site was the lower extremities (104 cases, 65.4%). Common symptoms included redness (96 cases, 60.4%), swelling (129 cases, 81.1%), local heat (60 cases, 37.7%), pain (100 cases, 62.9%), and skin ulceration or necrosis (9 cases, 5.7%). Imaging findings included soft tissue swelling (66 cases, 57.9%), gas accumulation (41 cases, 36.0%), and abnormal signal/density shadows (50 cases, 43.9%). Staphylococcus aureus was the main pathogenic bacterium [12.0% (31/259)], and drug-resistant Escherichia coli had the highest detection rate among drug-resistant bacteria [35.1% (13/37)]. Regarding debridement and repair, most patients (80 cases, 50.3%) underwent debridement ≥ 72 hours after admission, while only 10.1% (16 cases) received debridement within 6 hours. Most patients underwent multiple debridements, with 2 times of debridements being the most common (68 cases, 42.8%), and the maximum times of debridements reached 6. The largest number of patients received secondary suture (44 cases, 27.7%). In terms of complications, sepsis was the most common (66 cases, 41.51%), followed by acute kidney injury, respiratory failure requiring mechanical ventilation, and multiple organ dysfunction syndrome (MODS), while disseminated intravascular coagulation (DIC) was the least common. During the follow-up period, 9 patients (5.66%) were readmitted within 90 days, and 11 patients died, with a mortality rate of 6.92%. Univariate analysis showed that diabetes, coronary heart disease, gout, body temperature, heart rate, C-reactive protein, platelet count, total bilirubin, albumin, creatinine, out-of-hospital treatment, and out-of-hospital use of antimicrobial agents were significantly associated with sepsis in NSTI patients (all P < 0.05). Multivariate Logistic regression analysis showed that coronary heart disease [odds ratio (OR) = 30.085, 95% confidence interval (95%CI) was 2.105-956.935], C-reactive protein (OR = 1.026, 95%CI was 1.009-1.054), and total bilirubin (OR = 1.436, 95%CI was 1.188-1.948) were independent associated factors for sepsis in NSTI patients (all P < 0.05). ROC curve analysis revealed that the combination of the three predictors yielded the highest AUC for predicting sepsis in NSTI patients compared to any individual predictor [area under the curve (AUC) = 0.799 (95%CI was 0.721-0.878)].
CONCLUSIONS
The clinical features of NSTI patients show certain regularity. Coronary heart disease, C-reactive protein, and total bilirubin are independent associated factors for sepsis in NSTI patients.
Humans
;
Retrospective Studies
;
Male
;
Sepsis
;
Soft Tissue Infections/microbiology*
;
Female
;
Middle Aged
;
Aged
;
Adult
;
Prognosis
;
Risk Factors
;
Necrosis
;
Logistic Models
;
Fasciitis, Necrotizing
10.Study on the Mechanism of Guanyuan Mingmen Sequential Acupuncture Activating FSHR/cAMP/PKA Pathway to Promote Granulosa Cell Proliferation in POI Model Rats
Jiang-Hong XU ; Yue-Lai CHEN ; Ping YIN ; Xue-Dan ZHAO ; Hui-Min ZHENG ; Jun-Wei HU ; Lu-Min LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):965-972
Objective To observe the therapeutic effects and mechanisms of Guanyuan Mingmen Sequential Acupuncture on rats with premature ovarian insufficiency(POI)model.Methods Female SD rats were divided into the blank group,the model group,the protein kinase A(PKA)inhibitor(H89)+acupuncture group,and the acupuncture group,with 12 rats in each group.Except for the blank group,the POI model was prepared by gavage with Tripterygium Glycosides Tablets in the other three groups of rats.After the model was successfully established,the blank group and the model group were bundled once a day;in the acupuncture group,Guanyuan(RN4)point was taken during the intermotility period,and in the pre-motility period,Mingmen(DU4)point was taken;in the H89+acupuncture group,the intervention was performed in accordance with the acupuncture protocol of the acupuncture group,and H89 was injected intraperitoneally for 30 minutes prior to each acupuncture session.Continuous intervention was performed for 20 days.Samples were taken from each group of rats in the first estrus period and in proestrus period after intervention.Enzyme-linked immunosorbent assay(ELISA)was used to measure the levels of follicle stimulating hormone(FSH)and estradiol(E2)during the estrous phase,Western Blot was used to measure the protein expressions of follicle stimulating hormone receptor(FSHR)and aromatase P450(P450arom)during the estrous phase,and the activity of granulocytes during the estrous phase and the proestrus phase were measured using the cell-counting kit 8(CCK-8)method.The immunohistochemistry method was used to detect the protein expression of pre-motility proliferating cell nuclear antigen(PCNA).Results(1)Compared with the blank group,the serum FSH level of the model group and H89+acupuncture group was significantly increased(P<0.01),and the E2 level was significantly decreased(P<0.001);there was no difference between the FSH level of the H89+acupuncture group and that of the model group(P>0.05),and the E2 level of the H89+acupuncture group was lower than that of the model group(P<0.05);the FSH level of the acupuncture group was lower than that of the model group and that of the H89+acupuncture group(P<0.05),had no difference with the blank group(P>0.05),E2 level was significantly higher than the model group and H89+ acupuncture group(P<0.01),still being lower than the blank group(P<0.05).(2)The protein expressions of FSHR and P450arom in the model group and H89 + acupuncture group was lower than those in the blank group;the protein expression of FSHR in the H89 + acupuncture group was not different from that in the model group(P>0.05),while the protein expression level of P450arom was lower than that in the model group(P<0.05);the protein expression levels of FSHR and P450arom in the acupuncture group were higher than those in the model group and H89 + acupuncture group,but still lower than those in the blank group(P<0.05).(3)Both GCs activity and average optical density value of PCNA in the model group and H89+acupuncture group were lower than the blank group(P<0.05);both GCs activity and average optical density value of PCNA in the H89+acupuncture group were lower than the model group(P<0.05);the activity of GCs and average optical density value of PCNA of the acupuncture group were significantly higher than that of the model group and H89+acupuncture group(P<0.05 or P<0.01).Conclusion Guanyuan Mingmen Sequential Acupuncture can regulate sex hormone levels,increase GCs activity and promote GCs cell proliferation by up-regulating protein expressions of follicle stimulating hormone receptor(FSHR)/cyclic adenosine monophosphate(cAMP)/protein kinase A(PKA)pathway FSHR,P450arom,thus improving POI.


Result Analysis
Print
Save
E-mail