1.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis.
2.Effect of Cinobufacini on HepG2 cells based on CXCL5/FOXD1/VEGF pathway
Xiao-Ke RAN ; Xu-Dong LIU ; Hua-Zhen PANG ; Wei-Qiang TAN ; Tie-Xiong WU ; Zhao-Quan PAN ; Yuan YUAN ; Xin-Feng LOU
Chinese Pharmacological Bulletin 2024;40(12):2361-2368
Aim To investigate the impact of Cinobu-facini on the proliferation,invasion,and apoptosis of HepG2 cells and the underlying mechanism.Methods The proliferation of HepG2 cells was assessed using the CCK-8 method following treatment with Cinobufaci-ni.The invasion capability of HepG2 cells was evalua-ted through Transwell assay after exposure to Cinobufa-cini.The apoptosis rates of HepG2 cells post Cinobufa-cini intervention were measured using flow cytometry,and the expression levels of VEGF in the culture medi-um of HepG2 cells were determined using enzyme-linked immunoassay.Furthermore,qRT-PCR and Western blot analyses were conducted to assess the im-pact of Cinobufacini on mRNA and protein expression levels related to the CXCL5/FOXD1/VEGF pathway.The interaction between CXCL5 and FOXD1 was inves-tigated via co-immunoprecipitation.Results Cinobufa-cini treatment led to a gradual decrease in HepG2 cell viability in a dose-dependent manner compared to the control group(P<0.05).Moreover,Cinobufacini sig-nificantly suppressed HepG2 cell invasion(P<0.05)while enhancing cell apoptosis(P<0.05).Notably,Cinobufacini exhibited inhibitory effects on the CX-CL5/FOXD1/VEGF pathway,as evidenced by re-duced expression of related mRNA and proteins(P<0.05).FOXD1 was identified as the binding site of CXCL5.Overexpression of CXCL5 resulted in in-creased proliferation and VEGF secretion by HepG2 cells(P<0.05),and increased expression of FOXD1 and VEGF(P<0.05).However,Cinobufacini inter-vention effectively inhibited liver cancer cell prolifera-tion and invasion(P<0.05),promoted apoptosis(P<0.05),reduced VEGF secretion by HepG2 cells(P<0.05),and downregulated the expression of CXCL5 and FOXD1 in HepG2 cells(P<0.05);but com-pared with the unexpressed group of Cinobufacini,its ability to inhibit cell activity was weakened(P<0.05),and its ability to inhibit the expression of CX-CL5,FOXD1,and VEGF was weakened(P<0.05).Conclusion Cinobufacini may inhibit HepG2 cell pro-liferation and invasion and promote HepG2 cell apopto-sis by regulating the CXCL5/FOXD1/VEGF pathway.
3.Clinical characteristics of patients with MitraClip operation and predictors for the occurrence of afterload mismatch
Xiao-Dong ZHUANG ; Han WEN ; Ri-Hua HUANG ; Xing-Hao XU ; Shao-Zhao ZHANG ; Zhen-Yu XIONG ; Xin-Xue LIAO
Chinese Journal of Interventional Cardiology 2024;32(10):562-568
Objective To explore the risk factors related to afterload mismatch(AM)after transcatheter mitral valve repair(MitraClip).Methods This was a retrospective cohort study.48 patients hospitalized in the Department of Cardiovascular Medicine,the First Affiliated Hospital of Sun Yat-sen University from December 2021 to December 2023,who underwent MitraClip due to severe mitral regurgitation(MR)were included.Preoperative clinical data,laboratory tests,and preoperative and postoperative color Doppler echocardiographic examination results of surgical patients were collected.AM was defined as the left ventricular ejection fraction(LVEF)decreased by 15%or more after surgery compared with the one before(dLVEF≤-15%).Patients were divided into AM group and non-AM group according to whether afterload mismatch occurred.Univariate and multivariate logistic regression were used to analyze the risk factors of postoperative AM.Results Among 48 patients who underwent MitraClip,14 of them(29.2%)developed afterload-mismatched.For those without AM,their overall LVEF was improved after the operation;for patients in both AM group and non-AM group,their overall left ventricular end-diastolic diameter(LVEDd),left ventricular end-diastolic diameter volume index(LVEDVi)was reduced compared with the preoperative ones.Univariate regression analysis showed that C-reactive protein levels(OR 1.98,95%CI 1.02-3.83),platelets(OR 2.22,95%CI 1.08-4.53),systemic immune inflammation index(OR 1.96,95%CI 1.03-3.71)were associated with an increased risk of AM in patients undergoing MitraClip(all P<0.05),while those with larger right atrial diameter(OR 0.35,95%CI 0.13-0.93)or moderate to severe tricuspid regurgitation(OR 0.19,95%CI 0.05-0.81)were less likely to develop into AM(both P<0.05),which is still satisfied after adjustment.Conclusions For patients who underwent MitraClip,C-reactive protein levels,platelets and systemic immune inflammation index(SII)are associated with an increased risk of afterload mismatched,while those with larger right atrial diameter or moderate to severe tricuspid regurgitation were less likely to develop into AM.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Autosomal recessive axonal neuropathy with neuromyotonia in a Tibetan family caused by HINT1 gene variation and literature review
Xifang RU ; Rong ZHAO ; Yanbin FAN ; Shuang WANG ; Yilin YE ; Beiyu XU ; Chunde LI ; Zhen HUANG ; Hui XIONG
Chinese Journal of Applied Clinical Pediatrics 2024;39(2):128-133
Objective:To summarize the characteristics of autosomal recessive axonal neuropathy with neuromyotonia (ARAN-NM) caused by HINT1 gene mutation. Methods:Retrospective case summary.Clinical data of 2 Tibetan siblings diagnosed with ARAN-NM in the Department of Pediatrics of Peking University First Hospital in August 2023 were retrospectively analyzed.A review of literature reporting relevant Chinese patients was conducted.Results:The proband and her elder brother were aged 13 and 19, respectively.Both developed abnormal gait at the age of 11, followed by varus, claudication, and weak thumb strength.The proband also had neuromyotonia.Physical examinations showed that the proband and her elder brother had decreased muscle strength of the extremities, mainly in the thumbs and distal ends of lower limbs.The distal muscles of the proband′s lower extremities and the muscles of both hands of the proband′s elder brother were atrophied.Both feet showed talipes equinovarus in the proband and her elder brother.The proband′s electromyography (EMG) showed peripheral nerve injuries (motor and sensory axonal involvement, especially in distal ends) and myotonic potentials.The trio-whole exon sequencing detected homozygous pathogenic variation in HINT1 gene in both the proband and her elder brother, who were diagnosed as ARAN-NM based on c. 169A>G (p.K57E). After the Carbamazepine treatment, the proband′s neuromyotonia, numbness and weakness were relieved.Both the proband and her elder brother underwent orthopaedic surgery and rehabilitation.Their foot deformities and gait were significantly improved.Two Chinese literatures (2 patients) and four English literatures (8 patients) were retrieved.Including the proband and her elder brother in this study, there were 12 ARAN-NM patients, 10 of whom had clinical data.The ages of onset and diagnosis were 2-16 (1 case unknown) and 13-33 years old, respectively.Myasthenia was present in 9 patients, especially in distal ends.Eight patients were complicated with neuromyotonia, nine patients with muscle atrophy, seven patients with foot deformity, and two patients with sensory disturbance.Creatine kinase(CK) was elevated in all 9 patients tested or CK.EMG showed neurogenic injuries in all patients and neuromyotonia discharge in six patients.Three patients were treated with Carbamazepine, and some symptoms were relieved.Missense/nonsense mutations were found in the 12 patients, and the high-frequency variation was c. 112T>C (p.C38R). Conclusions:ARAN-NM is a rare autosomal recessive neuromuscular disease caused by HINT1 gene mutation.There is no ethnic difference in clinical manifestations, mainly distal limb weakness with neuromyotonia.Carbamazepine can alleviate some symptoms, and orthopaedic surgery can improve foot deformity and gait.
6.Clinical application and perspectives of unilateral biportal endoscopic technique
Zhen HU ; Yang YANG ; Shu-Xiong ZHAO ; Qun-Li ZHANG ; Tong-Tong ZHANG ; Lin LIU
Medical Journal of Chinese People's Liberation Army 2024;49(3):349-354
Unilateral biportal endoscopic(UBE)technique is a minimally invasive spinal technique developed rapidly in recent years.Compared with traditional spinal endoscopy,the prominent feature of UBE is that it can open two channels on the same side of the spine,which can be used to provide visual field and insert operating instruments respectively,greatly expanding the operating space and reducing the difficulty of surgery.It has the advantages of less bleeding,little injury,quick recovery and mild pain,and has unique advantages in the treatment of lumbar spinal stenosis,lumbar disc herniation and other lumbar degenerative diseases.With the continuous in-depth exploration and development of the UBE technique,the field of diseases that can be treated by this technology has gradually expanded.It is not only limited to lumbar diseases,but also has made great progress in cervical and thoracic diseases,which has attracted the attention of many spinal surgeons.UBE technique has become one of the promising surgical methods for spinal-related diseases,but there are also complications such as incomplete decompression,nerve root and dural injury,epidural hematoma,relatively prolonged operation time,operation fatigue and other deficiencies.This paper summarizes the progress of the UBE technique,discusses its complications and deficiencies,proposes relevant solutions and possible future directions for its development,so as to provide reference for the clinical practice of UBE technique.
7.Structure identification and content analysis of active components in Xiaoyao pills
Jie FU ; Jin-bo YU ; Lin CONG ; Zhen-xiong ZHAO ; Yan WANG
Acta Pharmaceutica Sinica 2023;58(1):186-192
Xiaoyao pills are a famous traditional Chinese medicine collected in Welfare Pharmacy, which is a classic prescription for treating liver depression and spleen deficiency. However, its composition is complex. In order to better control the quality of Xiaoyao pills, in this study, HPLC-ion-trap time-of-flight mass spectrometry (LC-IT-TOF/MS) was used to identify the main ingredients of Xiaoyao pills, paeoniflorin, albiflorin, glycyrrhizic acid, saikosaponin A and saikosaponin B2. Then a liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed for simultaneous determination and quantification of the main compounds. Fragmentation pathways of five active components were obtained. The method was validated. Five active ingredients in Xiaoyao pills had a good linear relationship, and the values of RSD (%) of repeatability were all less than 5%, the recovery ranges were between 90% and 115%, and the values of RSD (%) of each substance were less than 10% after the sample solution is placed for 24 hours. Three batches of Xiaoyao pills (concentrated pellets) and two batches of Xiaoyao pills (water pellets) were determined, the contents of paeoniflorin in concentrated pills were more than 4.0 mg·g-1, and those in water pills were more than 2.5 mg·g-1, which was accordance with Chinese Pharmacopoeia. However, other compounds behave differently. This method has high sensitivity and reliable measurement results, which provides basis for quality control of Xiaoyao pills and material basis for pharmacology research.
8.Characteristics of mucormycosis in adult acute leukemia: a case report and literature review.
Hui Hui FAN ; Wen Rui YANG ; Xin ZHAO ; You Zhen XIONG ; Kang ZHOU ; Xia Wan YANG ; Jian Ping LI ; Lei YE ; Yang YANG ; Yuan LI ; Li ZHANG ; Li Ping JING ; Feng Kui ZHANG
Chinese Journal of Hematology 2023;44(2):154-157
9.T-large granular lymphocytic leukemia presenting as aplastic anemia: a report of five cases and literature review.
Xiao Xia LI ; Jian Ping LI ; Xin ZHAO ; Yuan LI ; You Zhen XIONG ; Guang Xin PENG ; Lei YE ; Wen Rui YANG ; Kang ZHOU ; Hui Hui FAN ; Yang YANG ; Yang LI ; Lin SONG ; Li Ping JING ; Li ZHANG ; Feng Kui ZHANG
Chinese Journal of Hematology 2023;44(2):162-165
10.Epidemiological characteristics of a 2019-nCoV outbreak caused by Omicron variant BF.7 in Shenzhen.
Yan Peng CHENG ; Dong Feng KONG ; Jia ZHANG ; Zi Quan LYU ; Zhi Gao CHEN ; Hua Wei XIONG ; Yan LU ; Qing Shan LUO ; Qiu Ying LYU ; Jin ZHAO ; Ying WEN ; Jia WAN ; Fang Fang LU ; Jian Hua LU ; Xuan ZOU ; Zhen ZHANG
Chinese Journal of Epidemiology 2023;44(3):379-385
Objective: To explore the epidemiological characteristic of a COVID-19 outbreak caused by 2019-nCoV Omicron variant BF.7 and other provinces imported in Shenzhen and analyze transmission chains and characteristics. Methods: Field epidemiological survey was conducted to identify the transmission chain, analyze the generation relationship among the cases. The 2019-nCoV nucleic acid positive samples were used for gene sequencing. Results: From 8 to 23 October, 2022, a total of 196 cases of COVID-19 were reported in Shenzhen, all the cases had epidemiological links. In the cases, 100 were men and 96 were women, with a median of age, M (Q1, Q3) was 33(25, 46) years. The outbreak was caused by traverlers initial cases infected with 2019-nCoV who returned to Shenzhen after traveling outside of Guangdong Province.There were four transmission chains, including the transmission in place of residence and neighbourhood, affecting 8 persons, transmission in social activity in the evening on 7 October, affecting 65 persons, transmission in work place on 8 October, affecting 48 persons, and transmission in a building near the work place, affecting 74 persons. The median of the incubation period of the infection, M (Q1, Q3) was 1.44 (1.11, 2.17) days. The incubation period of indoor exposure less than that of the outdoor exposure, M (Q1, Q3) was 1.38 (1.06, 1.84) and 1.95 (1.22, 2.99) days, respcetively (Wald χ2=10.27, P=0.001). With the increase of case generation, the number and probability of gene mutation increased. In the same transmission chain, the proportion of having 1-3 mutation sites was high in the cases in the first generation. Conclusions: The transmission chains were clear in this epidemic. The incubation period of Omicron variant BF.7 infection was shorter, the transmission speed was faster, and the gene mutation rate was higher. It is necessary to conduct prompt response and strict disease control when epidemic occurs.
Male
;
Humans
;
Female
;
SARS-CoV-2
;
COVID-19/epidemiology*
;
Disease Outbreaks
;
Epidemics
;
China/epidemiology*

Result Analysis
Print
Save
E-mail