1.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
2.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
3.Analysis of Coagulation Changes and Influencing Factors during Treatment of Acute Promyelocytic Leukemia.
Zhen-Zhu CHEN ; Tao LIU ; He-He GUO ; Wen-Wen REN ; Kai WANG ; Ying-Xu PANG
Journal of Experimental Hematology 2025;33(1):45-53
OBJECTIVE:
To analyze the changes in coagulation during the treatment of acute promyelocytic leukemia (APL) and explore the influencing factors of coagulation in patients with APL.
METHODS:
Data of 166 APL patients admitted to our hospital from November 2018 to May 2023 were retrospectively analyzed, and the changes of various clinical indicators before and during treatment were compared. 166 APL patients were divided into abnormal coagulation group (n =115) and normal coagulation group (n =51) according to whether they experienced coagulation dysfunction. The basic information, clinical data and laboratory indicators of the two groups were compared. Multivariate logistic regression analysis was used to screen risk factors for coagulation dysfunction and established logistic regression model. Then we developed a neural network model and ranked the importance of the influencing factors, and used receiver operating characteristic (ROC) curves to evaluate the predictive performance of the two models.
RESULTS:
The comparative results of various clinical indicators in 166 APL patients before and during treatment showed that systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C), estimated glomerular filtration rate (eGFR), platelet (PLT) and fibrinogen (FIB) were significantly increased during the treatment (P < 0.05), while glycosylated hemoglobin (HbA1c), high density lipoprotein cholesterol (HDL-C), blood urea nitrogen (BUN), serum creatinine (SCr), high-sensitivity C reactive protein (hs-CRP), IL-6, TNF-α, TGF-β, white blood cells (WBC), absolute neutrophil count (ANC), prothrombin time (PT), activated partial thromboplastin time (APTT), D-dimer (D-D), fibrinogen degradation products (FDP) and lactate dehydrogenase (LDH) were significantly decreased during the treatment (P < 0.05). The proportion of patients with hemorrhage and high-risk APL in the abnormal coagulation group was significantly higher than that in the normal coagulation group (P < 0.05). The levels of IL-6, TNF-α, WBC, ANC, D-D, FDP and LDH in the abnormal coagulation group were significantly higher than those in the normal coagulation group (P < 0.05). The influencing factors selected by univariate analysis were incorporated into logistic regression analysis and neural network model to predict the risk of coagulation dysfunction in APL patients. ROC curves showed that the AUC of the two models were 096 and 0.908, the sensitivity were 0.824 and 0.892, the specificity were 0.940 and 0.904, the Youden index were 064 and 0.796, and the accuracy were 0.882 and 0.898, respectively.
CONCLUSION
High risk stratification, hemorrhage, elevated WBC, LDH, ANC and FDP levels are independent risk factors for coagulation dysfunction in APL patients. The logistic regression model and neural network model based on these risk factors demonstrate good predictive performance for coagulation dysfunction in APL patients.
Humans
;
Leukemia, Promyelocytic, Acute/therapy*
;
Blood Coagulation
;
Retrospective Studies
;
Male
;
Female
;
Risk Factors
;
Logistic Models
;
Middle Aged
;
Adult
;
ROC Curve
4.Prognostic Significance of Monocyte Count in Patients with Non-Severe Aplastic Anemia.
Xue-Dong SHI ; Li HAN ; Shu-Qi WANG ; Qiu-Shuang WANG ; Zhen-Yu LI ; Kai-Lin XU ; Hai CHENG
Journal of Experimental Hematology 2025;33(4):1120-1126
OBJECTIVE:
To investigate the prognostic value of peripheral blood absolute monocyte count(AMC) in non-severe aplastic anaemia(NSAA) patients.
METHODS:
178 patients with NSAA who attended the Affiliated Hospital of Xuzhou Medical University from April 2008 to September 2020 were retrospectively analyzed, and the optimal cut-off value of peripheral blood AMC was determined by the receiver operating characteristic curve of the subjects, and they were divided into low AMC group (48 patients) and normal AMC group (130 patients), and the differences in clinical characteristics between the two groups were compared. Overall survival(OS) and progression-free survival(PFS) were analyzed by Kaplan-Meier. Univariate and multivariate Cox regression analysis were used to determine the independent prognostic value of AMC.
RESULTS:
Among 178 NSAA patients, 105(59.0%) were male and 73(41.0%) were female, with a median age of 31(18-87) years old, a median follow-up time of 58 months (range: 6 months-175 months), and a median AMC of 0.15×109/L [range: (0.01-0.59)×109/L)]. The proportion of granulocytes (27.5% vs 36.0%, P < 0.05), and the proportion of mature monocytes (1% vs 2%, P < 0.05) in the low AMC group were lower than that in the normal AMC group; the proportion of mature lymphocytes in the low AMC group was higher than that in the normal AMC group (54% vs 50%, P < 0.05). However, there was no significantly different in the proportion of erythropoietic cells and stages of the erythropoietic cells between the two groups ( P >0.05). CR (27.7% vs 10.4%) and ORR (75.4% vs 56.3%) in the normal AMC group were higher than that in the low AMC group. Compared with patients in the low AMC group, AA patients in the normal AMC had better 5-year OS (98.5% vs 86.9%, P < 0.01), and the 5-year PFS (86.0% vs 58.9%, P < 0.01). Also, the 10-year survival rate of patients in the normal AMC group was higher than that in the low AMC group (98.5% vs 60.5%,P < 0.01). Univariate analysis showed that age, reticulocyte count, AMC<0.1×109/L and the proportion of bone marrow mature monocytes were related with patients survival. Multivariate Cox regression analysis showed that monocyte count reduction was not an independent poor prognostic factor in NSAA patients (HR =4.474,95%CI :0.508-44.390; P =0.172).
CONCLUSION
Low AMC level at initial diagnosis is not an independent prognostic factor for NSAA patients, but still suggest potential prognostic value of AMC.
Humans
;
Anemia, Aplastic/diagnosis*
;
Female
;
Male
;
Prognosis
;
Monocytes
;
Adult
;
Middle Aged
;
Retrospective Studies
;
Adolescent
;
Aged
;
Young Adult
;
Aged, 80 and over
;
Leukocyte Count
5.Impact of Spinal Manipulative Therapy on Brain Function and Pain Alleviation in Lumbar Disc Herniation: A Resting-State fMRI Study.
Xing-Chen ZHOU ; Shuang WU ; Kai-Zheng WANG ; Long-Hao CHEN ; Zi-Cheng WEI ; Tao LI ; Zi-Han HUA ; Qiong XIA ; Zhi-Zhen LYU ; Li-Jiang LYU
Chinese journal of integrative medicine 2025;31(2):108-117
OBJECTIVE:
To elucidate how spinal manipulative therapy (SMT) exerts its analgesic effects through regulating brain function in lumbar disc herniation (LDH) patients by utilizing resting-state functional magnetic resonance imaging (rs-fMRI).
METHODS:
From September 2021 to September 2023, we enrolled LDH patients (LDH group, n=31) and age- and sex-matched healthy controls (HCs, n=28). LDH group underwent rs-fMRI at 2 distinct time points (TPs): prior to the initiation of SMT (TP1) and subsequent to the completion of the SMT sessions (TP2). SMT was administered once every other day for 30 min per session, totally 14 treatment sessions over a span of 4 weeks. HCs did not receive SMT treatment and underwent only one fMRI scan. Additionally, participants in LDH group completed clinical questionnaires on pain using the Visual Analog Scale (VAS) and the Japanese Orthopedic Association (JOA) score, whereas HCs did not undergo clinical scale assessments. The effects on the brain were jointly characterized using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo). Correlation analyses were conducted between specific brain regions and clinical scales.
RESULTS:
Following SMT treatment, pain symptoms in LDH patients were notably alleviated and accompanied by evident activation of effects in the brain. In comparison to TP1, TP2 exhibited the most significant increase in ALFF values for Temporal_Sup_R and the most notable decrease in ALFF values for Paracentral_Lobule_L (voxelwise P<0.005; clusters >30; FDR correction). Additionally, the most substantial enhancement in ReHo values was observed for the Cuneus_R, while the most prominent reduction was noted for the Olfactory_R (voxelwise P<0.005; clusters >30; FDR correction). Moreover, a comparative analysis revealed that, in contrast to HCs, LDH patients at TP1 exhibited the most significant increase in ALFF values for Temporal_Pole_Sup_L and the most notable decrease in ALFF values for Frontal_Mid_L (voxelwise P<0.005; clusters >30; FDR correction). Furthermore, the most significant enhancement in ReHo values was observed for Postcentral_L, while the most prominent reduction was identified for ParaHippocampal_L (voxelwise P<0.005; clusters >30; FDR correction). Notably, correlation analysis with clinical scales revealed a robust positive correlation between the Cuneus_R score and the rate of change in the VAS score (r=0.9333, P<0.0001).
CONCLUSIONS
Long-term chronic lower back pain in patients with LDH manifests significant activation of the "AUN-DMN-S1-SAN" neural circuitry. The visual network, represented by the Cuneus_R, is highly likely to be a key brain network in which the analgesic efficacy of SMT becomes effective in treating LDH patients. (Trial registration No. NCT06277739).
Humans
;
Magnetic Resonance Imaging
;
Intervertebral Disc Displacement/diagnostic imaging*
;
Male
;
Female
;
Brain/diagnostic imaging*
;
Adult
;
Manipulation, Spinal/methods*
;
Middle Aged
;
Lumbar Vertebrae/physiopathology*
;
Pain Management
;
Rest
;
Case-Control Studies
6.Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling.
Yongxian LI ; Jinbo YUAN ; Wei DENG ; Haishan LI ; Yuewei LIN ; Jiamin YANG ; Kai CHEN ; Heng QIU ; Ziyi WANG ; Vincent KUEK ; Dongping WANG ; Zhen ZHANG ; Bin MAI ; Yang SHAO ; Pan KANG ; Qiuli QIN ; Jinglan LI ; Huizhi GUO ; Yanhuai MA ; Danqing GUO ; Guoye MO ; Yijing FANG ; Renxiang TAN ; Chenguang ZHAN ; Teng LIU ; Guoning GU ; Kai YUAN ; Yongchao TANG ; De LIANG ; Liangliang XU ; Jiake XU ; Shuncong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):90-101
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL's impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL's inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.
Animals
;
NFATC Transcription Factors/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Ovariectomy
;
Osteoclasts/metabolism*
;
Female
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
NF-kappa B/genetics*
;
Osteoporosis/genetics*
;
Signal Transduction/drug effects*
;
Bone Resorption/genetics*
;
Cell Differentiation/drug effects*
;
Humans
;
RANK Ligand/metabolism*
;
Mitogen-Activated Protein Kinases/genetics*
;
Transcription Factors
7.Polycystin-2 Ion Channel Function and Pathogenesis in Autosomal Dominant Polycystic Kidney
Kai WANG ; Yuan HUANG ; Ce-Fan ZHOU ; Jing-Feng TANG ; Xing-Zhen CHEN
Progress in Biochemistry and Biophysics 2024;51(1):47-58
Polycystin-2 (also known as PC2, TRPP2, PKD2) is a major contributor to the underlying etiology of autosomal dominant polycystic kidney disease (ADPKD), which is the most prevalent monogenic kidney disease in the world. As a transient receptor potential (TRP) channel protein, PC2 exhibits cation-permeable, Ca2+-dependent channel properties, and plays a crucial role in maintaining normal Ca2+ signaling in systemic physiology, particularly in ADPKD chronic kidney disease. Structurally, PC2 protein consists of six transmembrane structural domains (S1-S6), a polycystin-specific “tetragonal opening for polycystins” (TOP) domain located between the S1 and S2 transmembrane structures, and cytoplasmic N- and C-termini. Although the cytoplasmic N-terminus and C-terminus of PC2 may not be significant in the gating of PC2 channels, there is still much protein structural information that needs to be thoroughly investigated, including the regulation of channel function and the assembly of homotetrameric ion channels. This is further supported by the presence of human disease-associated mutation sites on the PC2 structure. Moreover, PC2 synthesized in the endoplasmic reticulum is enriched in specific subcellular localization via membrane transport and can assemble itself into homotetrameric ion channels, as well as form heterotrimeric receptor-ion channel complexes with other proteins. These complexes are involved in a wide range of physiological functions, including the regulation of mechanosensation, cell polarity, cell proliferation, and apoptosis. In particular, PC2 assembles with chaperone proteins to form polycystic protein complexes that affect Ca2+ transport in cell membranes, cilia, endoplasmic reticulum, and mitochondria, and are involved in activating cell fate-related signaling pathways, particularly cell differentiation, proliferation, survival, and apoptosis, and more recently, autophagy. This leads to a shift of cystic cells from a normal uptake, quiescent state to a pathologically secreted, proliferative state. In conclusion, the complex structural and functional roles of PC2 highlight its critical importance in the pathogenesis of ADPKD, making it a promising target for therapeutic intervention.
8.Lanthanide Metal Organic Framework as A New Unlabeled Fluorescence Anisotropy Probe for Detection of Phosphate Ions
Kai MAO ; Xiao-Yan WANG ; Yu-Jie LUO ; Jia-Li XIE ; Tian-Jin XIE ; Yuan-Fang LI ; Cheng-Zhi HUANG ; Shu-Jun ZHEN
Chinese Journal of Analytical Chemistry 2024;52(1):35-44,中插1-中插4
Fluorescence anisotropy(FA)analysis has many advantages such as no requirement of separation,high throughput and real-time detection,and thus has been widely used in many fields,including biochemical analysis,food safety detection,environmental monitoring,etc.However,due to the small volume or mass of the target,its combination with the fluorescence probe cannot produce significant signal change.To solve this issue,researchers often use nanomaterials to enhance the mass or volume of fluorophore to improve the sensitivity.Nevertheless,this FA amplification strategy also has some disadvantages.Firstly,nanomaterials are easy to quench fluorescence.As a result,the FA value is easily influenced by light scattering,which reduces the detection accuracy.Secondly,fluorescent probes in most methods require complex modification steps.Therefore,it is necessary to develop new FA probes that do not require the amplification of volume and mass or modification.As a new kind of nanomaterials,luminescent metal-organic framework(MOF)has a large volume(or mass)and strong fluorescence emission.It does not require additional signal amplification materials.As a consequence,it can be used as a potential FA probe.This study successfully synthesized a lanthanide metal organic framework(Ce-TCPP MOF)using cerium ion(Ce3+)as the central ion and 5,10,15,20-tetra(4-carboxylphenyl)porphyrin(H2TCPP)as the ligand through microwave assisted method,and used it as a novel unmodified FA probe to detect phosphate ions(Pi).In the absence of Pi,Ce-TCPP MOF had a significant FA value(r).After addition of Pi,Pi reacted with Ce3+in MOF and destroyed the structure of MOF into the small pieces,resulting in a decrease in r.The experimental results indicated that with the increase of Pi concentration,the change of the r of Ce-TCPP MOF(Δr)gradually increased.The Δr and Pi concentration showed a good linear relationship within the range of 0.5-3.5 μmol/L(0.016-0.108 mg/L).The limit of detection(LOD,3σ/k)was 0.41 μmol/L.The concentration of Pi in the Jialing River water detected by this method was about 0.078 mg/L,and the Pi value detected by ammonium molybdate spectrophotometry was about 0.080 mg/L.The two detection results were consistent with each other,and the detection results also meet the ClassⅡwater quality standard,proving that this method could be used for the detection of Pi in complex water bodies.
9.Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis
CHU MIAO ; CHEN GUANGDONG ; CHEN KAI ; ZHU PENGFEI ; WANG ZHEN ; QIAN ZHONGLAI ; TAO HUAQIANG ; XU YAOZENG ; GENG DECHUN
Journal of Zhejiang University. Science. B 2024;25(6):513-528,中插3-中插9
Osteoarthritis(OA)is a chronic progressive osteoarthropathy in the elderly.Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA.However,the specific mechanism of osteoclast differentiation in OA remains unclear.In our study,gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus(GEO)repository.GEO2R and Funrich analysis tools were employed to find differentially expressed genes(DEGs).Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses demonstrated that chemical carcinogenesis,reactive oxygen species(ROS),and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone.Furthermore,fourteen DEGs that are associated with oxidative stress were identified.The first ranked differential gene,heme oxygenase 1(HMOX1),was selected for further validation.Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1.Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro.Meanwhile,carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo.Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA.Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.
10.Study on fatigue vibration evaluation of ultrasonic knife tip based on Q factor
Ke-Sheng WANG ; Ze-Kai LI ; Pei LIU ; Jing-Sheng SUN ; Xu-Guang PENG ; Shuang-Shuang LI ; Qian-Hong HE ; Zhen LIU
Chinese Medical Equipment Journal 2024;45(6):17-22
Objective To propose a Q factor-based fatigue vibration evaluation method of the ultrasonic knife tip.Methods Firstly,an ultrasonic cutter fatigue testing table was established to realize repeated cutting,which was composed of a power supply module,a three-axis moving module,an ultrasonic cutter clamping module and a control module.Secondly,10 ultrasonic knives of some brand underwent fatigue testing with the table,during which non-contact measurement of the ultrasonic knife tip vibration was carried out and the Q factors were calculated at the five periods of the fatigue test,including the periods before cutting,after 500 times of cutting,after 1 000 times of cutting,after 2 000 times of cutting and after 3 000 times of cutting.Finally,the average cutting speed and burst pressure for coagulated vessels were computed at each period to validata the effectiveness of the method proposed.Results It's indicated that Q factor could effectively reflect the fatigue degradation of the ultrasonic knife tip,while the average cutting speed and burst pressure for coagulated vessels were difficult to efficiently evaluate the fatigue degradation level of the ultrasonic knife tip due to the uncertainty factors in the measurement process.Conclusion The proposed Q factor-based evaluation method can directly evaluate fatigue vibration of the ultrasonic knife tip in an accurate and quantitative manner.[Chinese Medical Equipment Journal,2024,45(6):17-22]

Result Analysis
Print
Save
E-mail