1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Application and development of pulsed electric field ablation in the treatment of atrial fibrillation
Zhen WANG ; Ming LIANG ; Jie ZHANG ; Jingyang SUN ; Yaling HAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):270-276
With the continuous development of China's aging society and the prevalence of unhealthy lifestyles, the incidence of cardiovascular disease in China has been increasing in recent years. Among them, atrial fibrillation (AF) is the most common arrhythmia disease. In recent years, pulsed field ablation (PFA) has been continuously applied to AF treatment as a novel treatment. This paper first introduces the principle of PFA applied to AF treatment, and introduces the research progress of PFA in different directions, such as the comparison of different ablation methods, the study of physical parameters, the study of ablation area, the study of tissue specificity and clinical research. Then, the clinical prior research of PFA is discussed, including the use of simulation software to obtain the simulation effect of different parameters, the evaluation of ablation effect during animal research, and finally the current AF treatment. Various prior studies and clinical studies are summarized, and suggestions are made for the shortcomings found in the study of AF treatment and the future research direction is prospected.
3.Modified Ditan Tang Regulates Biorhythm-related Genes in Rat Model of Non-alcoholic Fatty Liver Disease
Zhiwen PANG ; Yu LIU ; Nan SONG ; Jie WANG ; Jingxuan ZHU ; Zhen HUA ; Yupeng PEI ; Qun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):115-124
ObjectiveTo investigate the effects of modified Ditan tang on genes related to the transcription-translation feedback loop (TTFL) of biorhythm in the rat model of non-alcoholic fatty liver disease (NAFLD) and its mechanism for prevention and treatment of NAFLD. MethodsSixty-five healthy SPF male SD rats were randomly assigned into blank (n=20), model (n=15), and low-, medium-, and high-dose (2.68, 5.36, and 10.72 g·kg-1·d-1, respectively) modified Ditan tang (n=10) groups. Other groups except the blank group were fed a high-fat diet for 12 weeks. The modified Ditan tang groups were treated with the decoction at corresponding doses by gavage, and the blank and model groups were treated with an equal volume of normal saline from the 9th week for 4 weeks. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the serum were measured by an automatic biochemical analyzer. TG and non-esterified fatty acid (NEFA) assay kits were used to measure the levels of TG and NEFA in the liver. The pathological changes in the hypothalamus and liver were observed by hematoxylin-eosin staining, and the lipid deposition in the liver was observed by oil red O staining. The levels of brain-muscle ARNT-like protein 1 (BMAL1/ARNTL) in the hypothalamus and liver were determined by immunohistochemical staining. The mRNA and protein levels of BMAL1, circadian locomotor output cycles kaput (CLOCK), period circadian clock 2 (PER2), and cryptochrome1 (Cry1) in the hypothalamus and liver were determined by Real-time PCR and Western blot, respectively. ResultsCompared with the blank group, the model group showed elevated levels of TG, TC, LDL-C, AST, and ALT (P<0.01) and a lowered level of HDL-C (P<0.05) in the serum, elevated levels of TG and NEFA in the liver (P<0.01), pyknosis and deep staining of hypothalamic neuron cells, and a large number of vacuoles in the brain area. In addition, the model group showed lipid deposition in the liver, up-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.01), and down-regulated mRNA and protein levels of Cry1 and PER2 (P<0.01) in the hypothalamus and liver. Compared with the model group, all the three modified Ditan tang groups showed lowered levels of TG, TC, LDL-C, ALT, and AST (P<0.05, P<0.01) and an elevated level of HDL-C (P<0.05) in the serum, and lowered levels of TG and NEFA (P<0.05, P<0.01) in the liver. Furthermore, the three groups showed alleviated pyknosis and deep staining of hypothalamic neuron cells, reduced lipid deposition in the liver, down-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.05, P<0.01), and up-regulated mRNA and protein levels of Cry1 and PER2 (P<0.05, P<0.01) in the hypothalamus and liver. ConclusionModified Ditan tang can reduce lipid deposition in the liver and regulate the expression of CLOCK, BMAL1, Cry1, and PER2 in the TTFL of NAFLD rats.
4.Impact of "Internet +" empowerment education based on timing it right on psychological craving, anxiety symptoms and relapse rates in patients with alcohol dependence
Hao WANG ; Wei LI ; Wen'ge ZHEN ; Yuanyuan LI ; Jie LIU
Sichuan Mental Health 2025;38(1):34-40
BackgroundAlcohol dependence patients are prone to relapse after their attempts to quit drinking, which poses a considerable threat to their physical and mental health and creates a heavy burden on their families. Currently, empowerment education is increasingly being utilized in the rehabilitation management of chronic diseases, but there remains a striking lack of empirical research on the application of "Internet +" empowerment education based on timing it right in alcohol dependence patients. ObjectiveTo explore the impact of "Internet +" empowerment education based on timing it right on patients with alcohol dependence, in order to maximize the reduction in relapse rates, craving for alcohol and severity of anxiety symptoms. MethodsA total of 120 patients who were hospitalized in the Department of Addiction Medicine, Hebei Provincial Mental Health Center from May 2022 to April 2023 and met the diagnostic criteria for alcohol dependence in the International Classification of Diseases, tenth edition (ICD-10) were enrolled, and they were classified into study group (n=62) and control group (n=58) using random number table methods. Both groups received standard medication and routine care. Additionally, study group underwent a 6-month "Internet +" empowerment education based on timing it right. At baseline, all subjects were assessed using Penn Alcohol Craving Scale (PACS) and Self-rating Anxiety Scale (SAS). Three months and six months after intervention, assessments were conducted using PACS, SAS and Michigan Alcoholism Screening Test (MAST). ResultsThe relapse rates after three and six months of intervention were both lower in study group than those in control group, with statistically significant differences (χ2=8.575, 8.828, P<0.01). ANOVA with repeated measures on PACS total score and scores of each item revealed a significant time effect, group effect and time×group interaction effect (F=159.714~837.751, 84.645~393.606, 24.302~137.896, P<0.01). And significant time effect, group effect and time×group interaction effect were also reported on SAS scores (F=166.237, 65.325, 24.724, P<0.01). Conclusion"Internet +" empowerment education based on timing it right may help reduce relapse rates, alcohol cravings and severity of anxiety symptoms among patients with alcohol dependence. [Funded by 2023 Annual Hebei Provincial Medical Scientific Research Project Plan (number, 20231537)]
5.Predicting Postoperative Motor Function in High-risk Glioma Based on The Morphology Change of Motor Fiber Tracts
Qiang MA ; Song-Lin YU ; Chu-Yue ZHAO ; Xi-Jie WANG ; Song LIN ; Zhen-Tao ZUO ; Tao YU
Progress in Biochemistry and Biophysics 2025;52(4):1018-1026
ObjectiveGliomas in the motor functional area can damage the corticospinal tract (CST), leading to motor dysfunction. Currently, there is a lack of unified methods for evaluating the extent of CST damage, especially in patients with high surgical risk where the minimum distance from the lesion to the CST is less than 10 mm. This study aims to further clarify the classification method and clinical significance of CST morphological changes in these patients. MethodsThis retrospective study analyzed 109 high-risk functional area glioma patients who underwent neurosurgical treatment with preoperative diffusion tensor imaging (DTI) imaging and intraoperative neurostimulation guidance between 2014 and 2024. All patients had a lesion-to-tract distance (LTD) of less than 10 mm between the CST and the lesion. Preoperative DTI evaluation of CST involvement-induced morphological changes were reviewed. Patients were divided into 3 groups: 17 cases (15.6%) with symmetric CST morphology compared to the healthy side (CST symmetry), 48 cases (44.0%) with significant CST morphology changes compared to the healthy side (CST deformation), and 44 cases (40.4%) with CST overlap with the tumor (CST overlap). Then we classified patients according to preoperative assessment of tumor-induced morphological changes, and analyze postoperative motor function for each category. ResultsPostoperative pathology showed a significantly higher proportion of high-grade gliomas (HGG) in the CST overlap group compared to the other two groups (P=0.001). Logistic regression analysis showed that CST overlap was a predictor of HGG (P=0.000). The rate of total tumor resection in the CST deformation group and overlap group was lower than in the CST symmetric group (P=0.008). There was a total of 41 postoperative hemiplegic patients, with 4 cases (23.5%) in the CST symmetric group, 11 cases (22.9%) in the CST deformation group, and 26 cases (59.1%) in the CST overlap group. CST overlap with the tumor predicted postoperative hemiplegia (P=0.016). Two-way ANOVA analysis of the affected/healthy side and CST morphology groups showed significant main effects of CST grouping and healthy-affected side (P=0.017 and P=0.010), with no significant interaction (P=0.31). The fractional anisotropy (FA) value in the CST overlap group and the affected side was lower. A decrease in the FA value on the affected side predicted postoperative hemiplegia (sensitivity 69.2%, specificity 71.9%). ConclusionWe have established a method to predict postoperative hemiplegia in high-risk motor functional area glioma patients based on preoperative CST morphological changes. CST overlap leads to a decrease in CST FA values. This method can be used for precise patient management and aid in accurate preoperative surgical planning.
6.Detection and sequence analysis of broad bean wilt virus 2 on Rehmannia glutinosa.
Xiao-Long DENG ; Jie YAO ; Lang QIN ; Shi-Wen DING ; Tie-Lin WANG ; Kun ZHANG ; Lei CHENG ; Zhen HE
China Journal of Chinese Materia Medica 2025;50(7):1741-1747
To clarify the occurrence and distribution of broad bean wilt virus 2(BBWV2) on Rehmannia glutinosa, this study collected 87 R. glutinosa samples with typical symptoms of viral disease such as chlorosis and crumple from Wenxian county and Wuzhi county in Jiaozuo city, Henan province and Qiaocheng district in Bozhou city, Anhui province. The BBWV2 CP target band was amplified from 37 R. glutinosa samples by RT-PCR technology. The total detection rate reached 42.5%, among which 43.0% was detected in samples from Henan province. The detection rate in samples from Anhui province was 37.5%. 37 BBWV2 CP sequences were obtained by cloning and sequencing of BBWV2 positive samples(data has been submitted to GenBank, accession numbers: PP407959-PP407995), and the sequence analysis of these CP sequences with 91 other BBWV2 isolates in GenBank showed a high genetic diversity with a consistency rate of 70.8%-100%. Meanwhile, phylogenetic analysis showed that BBWV2 could be divided into three groups according to CP sequences, among which the BBWV2 in R. glutinosa isolates obtained in this study were all located in group 3. This study identified the differences in the occurrence, distribution, and genetic diversity of BBWV2 in R. glutinosa from Henan province and Anhui province and provided a theoretical basis for the prevention and control of BBWV2.
Rehmannia/virology*
;
Phylogeny
;
Plant Diseases/virology*
;
China
;
Molecular Sequence Data
;
Fabavirus/classification*
7.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans
8.Mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetic rats based on amino acid metabolism reprogramming pathways.
Xiang-Wei BU ; Xiao-Hui HAO ; Run-Yun ZHANG ; Mei-Zhen ZHANG ; Ze WANG ; Hao-Shuo WANG ; Jie WANG ; Qing NI ; Lan LIN
China Journal of Chinese Materia Medica 2025;50(12):3377-3388
This study aims to investigate the mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetes mellitus(T2DM) rats through the reprogramming of amino acid metabolism. A T2DM rat model was established by inducing insulin resistance through a high-fat diet combined with intraperitoneal injection of streptozotocin. The model rats were randomly divided into five groups: model group, high-, medium-, and low-dose Qingrun Decoction groups, and metformin group. A normal control group was also established. The rats in the normal and model groups received 10 mL·kg~(-1) distilled water daily by gavage. The metformin group received 150 mg·kg~(-1) metformin suspension by gavage, and the Qingrun Decoction groups received 11.2, 5.6, and 2.8 g·kg~(-1) Qingrun Decoction by gavage for 8 weeks. Blood lipid levels were measured in different groups of rats. Pathological damage in rat liver tissue was assessed by hematoxylin-eosin(HE) staining and oil red O staining. Transcriptome sequencing and untargeted metabolomics were performed on rat liver and serum samples, integrated with bioinformatics analyses. Key metabolites(branched-chain amino acids, BCAAs), amino acid transporters, amino acid metabolites, critical enzymes for amino acid metabolism, resistin, adiponectin(ADPN), and mammalian target of rapamycin(mTOR) pathway-related molecules were quantified using quantitative real-time polymerase chain reaction(qRT-PCR), Western blot, and enzyme-linked immunosorbent assay(ELISA). The results showed that compared with the normal group, the model group had significantly increased serum levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and resistin and significantly decreased ADPN levels. Hepatocytes in the model group exhibited loose arrangement, significant lipid accumulation, fatty degeneration, and pronounced inflammatory cell infiltration. In liver tissue, the mRNA transcriptional levels of solute carrier family 7 member 2(Slc7a2), solute carrier family 38 member 2(Slc38a2), solute carrier family 38 member 4(Slc38a4), and arginase(ARG) were significantly downregulated, while the mRNA transcriptional levels of solute carrier family 1 member 4(Slc1a4), solute carrier family 16 member 1(Slc16a1), and methionine adenosyltransferase(MAT) were upregulated. Furthermore, the mRNA transcription and protein expression levels of branched-chain α-keto acid dehydrogenase E1α(BCKDHA) and DEP domain-containing mTOR-interacting protein(DEPTOR) were downregulated, while mRNA transcription and protein expression levels of mTOR, as well as ribosomal protein S6 kinase 1(S6K1), were upregulated. The levels of BCAAs and S-adenosyl-L-methionine(SAM) were elevated. The serum level of 6-hydroxymelatonin was significantly reduced, while imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid levels were significantly increased. Compared with the model group, Qingrun Decoction significantly reduced blood lipid and resistin levels while increasing ADPN levels. Hepatocytes had improved morphology with reduced inflammatory cells, and fatty degeneration and lipid deposition were alleviated. Differentially expressed genes and differential metabolites were mainly enriched in amino acid metabolic pathways. The expression levels of Slc7a2, Slc38a2, Slc38a4, and ARG in the liver tissue were significantly upregulated, while Slc1a4, Slc16a1, and MAT expression levels were significantly downregulated. BCKDHA and DEPTOR expression levels were upregulated, while mTOR and S6K1 expression levels were downregulated. Additionally, the levels of BCAAs and SAM were significantly decreased. The serum level of 6-hydroxymelatonin was increased, while those of imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid were decreased. In summary, Qingrun Decoction may improve amino acid metabolism reprogramming, inhibit mTOR pathway activation, alleviate insulin resistance in the liver, and mitigate pathological damage of liver tissue in T2DM rats by downregulating hepatic BCAAs and SAM and regulating key enzymes involved in amino acid metabolism, such as BCKDHA, ARG, and MAT, as well as amino acid metabolites and transporters.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Insulin Resistance
;
Diabetes Mellitus, Type 2/genetics*
;
Male
;
Liver/drug effects*
;
Amino Acids/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Metabolic Reprogramming
9.Frontier technologies and development trends of network pharmacology: a patent bibliometric analysis.
Li TAO ; Zhi-Peng KE ; Tuan-Jie WANG ; Zhen-Zhong WANG ; Liang CAO ; Wei XIAO
China Journal of Chinese Materia Medica 2025;50(11):3070-3078
This study systematically analyzed the global research landscape, technological composition, and core patents in the field of networks target and network pharmacology, and proposes further suggestions based on the IncoPat patent citation database and VOSviewer bibliometric network visualization tool. Using patent literature metrics and scientific knowledge mapping method, technological innovation pathways, research hotspots, and future directions in this field were further revealed. In particular, this field is moving towards data-driven, intelligent, and systematic approaches. Patent analysis indicated that most patent applications in this domain focused on traditional Chinese medicine(TCM), which have provided key engineering technical approaches to explore and solve complex problems of TCM. By integrating big data and artificial intelligence technologies, network targets and network pharmacology have conferred high-precision screening and quality control of key components and targets in herbal formulations and prescriptions, accelerating the clinical translation and industrialization of TCM-based new drugs and health products with medicine-food homology. Therefore, it is essential to optimize the patent protection system and establish integrated technology platforms in this field for ensuring the competitiveness of technological achievements in research and clinical application. These efforts will advance the widespread application and high-quality development of TCM modernization, precision medicine, and innovative drug discovery.
Bibliometrics
;
Patents as Topic
;
Humans
;
Medicine, Chinese Traditional
;
Network Pharmacology/trends*
;
Drugs, Chinese Herbal/pharmacology*
10.Development of core outcome set for traditional Chinese medicine interventions in diabetic peripheral neuropathy.
Lu-Jie WANG ; Liang-Zhen YOU ; Chang CHANG ; Yu-Meng GENG ; Jin-Dong ZHAO ; Zhao-Hui FANG ; Ai-Juan JIANG
China Journal of Chinese Materia Medica 2025;50(14):4071-4080
This study developed a core outcome set(COS) for traditional Chinese medicine(TCM) interventions in diabetic peripheral neuropathy(DPN), standardizing evaluation metrics for TCM efficacy and providing a new framework for DPN treatment and management. A systematic search was conducted across databases, including CNKI, Wanfang, and PubMed, targeting clinical trial literature published between January 1, 2013, and January 1, 2023. The search focused on extracting outcome indicators and measurement tools used in TCM treatments for DPN. Retrospective data collection was performed from January 2018 to June 2023, involving 200 DPN patients hospitalized at the Department of Endocrinology of the First Affiliated Hospital of Anhui University of Chinese Medicine. Additionally, semi-structured interviews were conducted with inpatients, outpatients, their families, and nursing staff to further refine and enhance the list of outcome indicators. After two rounds of Delphi questionnaire survey and consensus meeting, a consensus was reached. The study initially retrieved 3 421 publications, of which 170 met the inclusion criteria after review. These publications, combined with retrospective analysis and semi-structured interviews, supplemented the list of indicators. After two rounds of Delphi surveys, experts agreed on 24 indicators and 6 measurement tools. The final COS determined by expert consensus meeting included 5 domains and 13 outcome indicators: neurological function signs, quality of life, TCM syndrome score, nerve conduction velocity, current perception threshold test, fasting blood glucose, 2 h postprandial blood glucose, glycated hemoglobin, complete blood count, urinalysis, liver function test, kidney function test, and electrocardiogram.
Humans
;
Diabetic Neuropathies/drug therapy*
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Retrospective Studies
;
Treatment Outcome
;
Male
;
Female

Result Analysis
Print
Save
E-mail