1.Impact of early detection and management of emotional distress on length of stay in non-psychiatric inpatients: A retrospective hospital-based cohort study.
Wanjun GUO ; Huiyao WANG ; Wei DENG ; Zaiquan DONG ; Yang LIU ; Shanxia LUO ; Jianying YU ; Xia HUANG ; Yuezhu CHEN ; Jialu YE ; Jinping SONG ; Yan JIANG ; Dajiang LI ; Wen WANG ; Xin SUN ; Weihong KUANG ; Changjian QIU ; Nansheng CHENG ; Weimin LI ; Wei ZHANG ; Yansong LIU ; Zhen TANG ; Xiangdong DU ; Andrew J GREENSHAW ; Lan ZHANG ; Tao LI
Chinese Medical Journal 2025;138(22):2974-2983
BACKGROUND:
While emotional distress, encompassing anxiety and depression, has been associated with negative clinical outcomes, its impact across various clinical departments and general hospitals has been less explored. Previous studies with limited sample sizes have examined the effectiveness of specific treatments (e.g., antidepressants) rather than a systemic management strategy for outcome improvement in non-psychiatric inpatients. To enhance the understanding of the importance of addressing mental health care needs among non-psychiatric patients in general hospitals, this study retrospectively investigated the impacts of emotional distress and the effects of early detection and management of depression and anxiety on hospital length of stay (LOS) and rate of long LOS (LLOS, i.e., LOS >30 days) in a large sample of non-psychiatric inpatients.
METHODS:
This retrospective cohort study included 487,871 inpatients from 20 non-psychiatric departments of a general hospital. They were divided, according to whether they underwent a novel strategy to manage emotional distress which deployed the Huaxi Emotional Distress Index (HEI) for brief screening with grading psychological services (BS-GPS), into BS-GPS ( n = 178,883) and non-BS-GPS ( n = 308,988) cohorts. The LOS and rate of LLOS between the BS-GPS and non-BS-GPS cohorts and between subcohorts with and without clinically significant anxiety and/or depression (CSAD, i.e., HEI score ≥11 on admission to the hospital) in the BS-GPS cohort were compared using univariable analyses, multilevel analyses, and/or propensity score-matched analyses, respectively.
RESULTS:
The detection rate of CSAD in the BS-GPS cohort varied from 2.64% (95% confidence interval [CI]: 2.49%-2.81%) to 20.50% (95% CI: 19.43%-21.62%) across the 20 departments, with a average rate of 5.36%. Significant differences were observed in both the LOS and LLOS rates between the subcohorts with CSAD (12.7 days, 535/9590) and without CSAD (9.5 days, 3800/169,293) and between the BS-GPS (9.6 days, 4335/178,883) and non-BS-GPS (10.8 days, 11,483/308,988) cohorts. These differences remained significant after controlling for confounders using propensity score-matched comparisons. A multilevel analysis indicated that BS-GPS was negatively associated with both LOS and LLOS after controlling for sociodemographics and the departments of patient discharge and remained negatively associated with LLOS after controlling additionally for the year of patient discharge.
CONCLUSION
Emotional distress significantly prolonged the LOS and increased the LLOS of non-psychiatric inpatients across most departments and general hospitals. These impacts were moderated by the implementation of BS-GPS. Thus, BS-GPS has the potential as an effective, resource-saving strategy for enhancing mental health care and optimizing medical resources in general hospitals.
Humans
;
Retrospective Studies
;
Male
;
Length of Stay/statistics & numerical data*
;
Female
;
Middle Aged
;
Adult
;
Psychological Distress
;
Inpatients/psychology*
;
Aged
;
Anxiety/diagnosis*
;
Depression/diagnosis*
2.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
3.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins
4.Development and application on a full process disease diagnosis and treatment assistance system based on generative artificial intelligence.
Wanjie YANG ; Hao FU ; Xiangfei MENG ; Changsong LI ; Ce YU ; Xinting ZHAO ; Weifeng LI ; Wei ZHAO ; Qi WU ; Zheng CHEN ; Chao CUI ; Song GAO ; Zhen WAN ; Jing HAN ; Weikang ZHAO ; Dong HAN ; Zhongzhuo JIANG ; Weirong XING ; Mou YANG ; Xuan MIAO ; Haibai SUN ; Zhiheng XING ; Junquan ZHANG ; Lixia SHI ; Li ZHANG
Chinese Critical Care Medicine 2025;37(5):477-483
The rapid development of artificial intelligence (AI), especially generative AI (GenAI), has already brought, and will continue to bring, revolutionary changes to our daily production and life, as well as create new opportunities and challenges for diagnostic and therapeutic practices in the medical field. Haihe Hospital of Tianjin University collaborates with the National Supercomputer Center in Tianjin, Tianjin University, and other institutions to carry out research in areas such as smart healthcare, smart services, and smart management. We have conducted research and development of a full-process disease diagnosis and treatment assistance system based on GenAI in the field of smart healthcare. The development of this project is of great significance. The first goal is to upgrade and transform the hospital's information center, organically integrate it with existing information systems, and provide the necessary computing power storage support for intelligent services within the hospital. We have implemented the localized deployment of three models: Tianhe "Tianyuan", WiNGPT, and DeepSeek. The second is to create a digital avatar of the chief physician/chief physician's voice and image by integrating multimodal intelligent interaction technology. With generative intelligence as the core, this solution provides patients with a visual medical interaction solution. The third is to achieve deep adaptation between generative intelligence and the entire process of patient medical treatment. In this project, we have developed assistant tools such as intelligent inquiry, intelligent diagnosis and recognition, intelligent treatment plan generation, and intelligent assisted medical record generation to improve the safety, quality, and efficiency of the diagnosis and treatment process. This study introduces the content of a full-process disease diagnosis and treatment assistance system, aiming to provide references and insights for the digital transformation of the healthcare industry.
Artificial Intelligence
;
Humans
;
Delivery of Health Care
;
Generative Artificial Intelligence
5.Metformin:A promising clinical therapeutical approach for BPH treatment via inhibiting dysregulated steroid hormones-induced prostatic epithelial cells proliferation
Tingting YANG ; Jiayu YUAN ; Yuting PENG ; Jiale PANG ; Zhen QIU ; Shangxiu CHEN ; Yuhan HUANG ; Zhenzhou JIANG ; Yilin FAN ; Junjie LIU ; Tao WANG ; Xueyan ZHOU ; Sitong QIAN ; Jinfang SONG ; Yi XU ; Qian LU ; Xiaoxing YIN
Journal of Pharmaceutical Analysis 2024;14(1):52-68
The occurrence of benign prostate hyperplasia(BPH)was related to disrupted sex steroid hormones,and metformin(Met)had a clinical response to sex steroid hormone-related gynaecological disease.How-ever,whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear.Here,our clinical study showed that along with prostatic epithelial cell(PEC)proliferation,sex steroid hormones were dysregulated in the serum and prostate of BPH patients.As the major contributor to dysregulated sex steroid hormones,elevated dihydrotestosterone(DHT)had a significant positive rela-tionship with the clinical characteristics of BPH patients.Activation of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor(AR)-mediated Yes-associated protein(YAP1)-TEA domain transcription factor(TEAD4)heterodimers.Met's anti-proliferative effects were blocked by AMPK inhibitor or YAP1 over-expression in DHT-cultured BPH-1 cells.Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.
6.Preparation of Phenolic Acid-sodium Hyaluronate Copolymers and in vitro Antioxidant Activity Assessment
Xiao-Yue ZHANG ; Xiao-Na WANG ; Min JIANG ; Ting-Ting HAN ; Jin-Song GONG ; Qing-Na LI ; Su-Zhen YANG ; Jin-Song SHI
Progress in Biochemistry and Biophysics 2024;51(8):1950-1962
ObjectiveSodium hyaluronate (HA) was used as the research object to modify it with phenolic acid in order to obtain the molecular structure with better antioxidant activity or even new activity. MethodsIn this study, 5 kinds of phenolic acid-sodium hyaluronate was prepared by free radical-mediated grafting method, and the grafts with the highest grafting degree were selected to optimize the synthesis conditions. Then, grafts structure and physicochemical properties were analyzed. The grafts were characterized by IR, UV, 1H NMR, FESEM and TGA spectra. The in vitro antioxidant capacity of grafts was determined by the scavenging ability of DPPH·, ABTS+· and O2-·. ResultsAmong 5 kinds of phenolic acid-sodium hyaluronate, the grafting rate of ferulic acid-sodium hyaluronate copolymer (FA-HA) was highest , which was chosen as experimental sample in the following tests. Firstly, the reaction conditions were investigated and the highest grafting rate was (16.59±0.31) mg/g at the optimal preparation conditions. Then, FA-HA structure and physicochemical properties were analyzed. Data from UV, IR, 1H NMR analyses, TGA showed that FA were successfully grafted to HA. Compared with HA, the results of gel permeation chrematography (GPC) showed that the molecular mass distribution ofFA-HA copolymer decreased from 34.4 to 31.5 ku, but the uniformity of molecular distribution was improved. FESEM results showed that the structure of copolymer exhibited a closely connected lamellar structure with a relatively smooth surface. TGA results showed that thermal stability of FA-HA had a little decline. The antioxidant performance in vitro results showed that, during 0.25-10 g/L, FA-HA can eliminate (83.76±4.86)% DPPH·, (76.95±5.06)% ABTS+· and (83.08±2.51)% O2-· respectively at 10 g/L. which were higher than that of native HA and FA. ConclusionFA and HA were successfully grafted together by free radical grafting, and the grafted FA-HA had better antioxidant activity in vitro, which provided a theoretical basis for further research and development of phenolic acid-HA grafts.
7.17β-Estradiol,through activating the G protein-coupled estrogen receptor,exacerbates the complication of benign prostatic hyperplasia in type 2 diabetes mellitus patients by inducing prostate proliferation
Yang TINGTING ; Qiu ZHEN ; Shen JIAMING ; He YUTIAN ; Yin LONGXIANG ; Chen LI ; Yuan JIAYU ; Liu JUNJIE ; Wang TAO ; Jiang ZHENZHOU ; Ying CHANGJIANG ; Qian SITONG ; Song JINFANG ; Yin XIAOXING ; Lu QIAN
Journal of Pharmaceutical Analysis 2024;14(9):1372-1386
Benign prostatic hyperplasia(BPH)is one of the major chronic complications of type 2 diabetes mellitus(T2DM),and sex steroid hormones are common risk factors for the occurrence of T2DM and BPH.The profiles of sex steroid hormones are simultaneously quantified by LC-MS/MS in the clinical serum of patients,including simple BPH patients,newly diagnosed T2DM patients,T2DM complicated with BPH patients and matched healthy individuals.The G protein-coupled estrogen receptor(GPER)inhibitor G15,GPER knockdown lentivirus,the YAP1 inhibitor verteporfin,YAP1 knockdown/overexpression lentivirus,targeted metabolomics analysis,and Co-IP assays are used to investigate the molecular mechanisms of the disrupted sex steroid hormones homeostasis in the pathological process of T2DM complicated with BPH.The homeostasis of sex steroid hormone is disrupted in the serum of patients,accompanying with the proliferated prostatic epithelial cells(PECs).The sex steroid hormone metabolic profiles of T2DM patients complicated with BPH have the greatest degrees of separation from those of healthy individuals.Elevated 17β-estradiol(E2)is the key contributor to the disrupted sex steroid hormone homeostasis,and is significantly positively related to the clinical characteristics of T2DM patients complicated with BPH.Activating GPER by E2 via Hippo-YAP1 signaling exacerbates high glucose(HG)-induced PECs prolifer-ation through the formation of the YAP1-TEAD4 heterodimer.Knockdown or inhibition of GPER-mediated Hippo-YAP1 signaling suppresses PECs proliferation in HG and E2 co-treated BPH-1 cells.The anti-proliferative effects of verteporfin,an inhibitor of YAP1,are blocked by YAP1 overexpression in HG and E2 co-treated BPH-1 cells.Inactivating E2/GPER/Hippo/YAP1 signaling may be effective at delaying the progression of T2DM complicated with BPH by inhibiting PECs proliferation.
8.Longitudinal analysis of the effects of golf training on the three-dimensional structure of children's spine using grating-based stereoscopic imaging
Hao PENG ; Yanping SONG ; Na YAO ; Zhen SHEN ; Yang JIANG ; Yueyu SONG ; Qigang CHEN
Chinese Journal of Medical Physics 2024;41(8):1041-1045
Objective To conduct a systematic study on the potential impact of long-term specialized golf training on the three-dimensional structure of the spine in adolescent children,and to reveal the biomechanical adaptation mechanism of children's spine,providing a theoretical basis for preventing potential sports injuries caused by golf training.Methods A longitudinal observational design was adopted,with 15 male adolescent children from a golf training center selected as research subjects.Three-dimensional spinal image data were collected using digital radiography at baseline,3 months and 6 months,and dynamic monitoring and analysis were performed.Results Golf training led to a series of adaptive changes in the three-dimensional structure of children's spine,mainly reflected in significant changes in pelvic tilt distance,vertebral body offset,vertebral rotation angle,pelvic rotation angle,and pelvic torsion angle.These changes exhibited a time-effect characteristic,indicating the strong adaptability of biomechanical system of children's spine.Conclusion Golf training can cause adaptive changes in the three-dimensional structure of children's spine,highlighting the need to maintain biomechanical balances of the spine and pelvis,and to take intervention measures such as symmetrical training to prevent sports injuries,improve training quality,and prolong athletic careers.
9.Application value of ultrasound technology in transurethral enucleation and resection of the prostate
Yu XIONG ; Feng-Feng LU ; Qi JIANG ; Zhen-Qian SONG ; Xiao-Feng ZHU ; Ze-Peng ZHU ; Zhi-Feng WEI ; Ai-Bing YAO
National Journal of Andrology 2024;30(4):300-305
Objective:To investigate the application value of ultrasound technology in transurethral enucleation and resection of the prostate(TUERP).Methods:This study included 78 BPH patients admitted in our hospital from June 2021 to June 2023,aged 70.68±8.63 years and with the indication of surgery.We randomly divided them into two groups to receive TUERP(the control group,n=39)and ultrasound-assisted TUERP(the US-TUERP group,n=39).We statistically analyzed and compared the rele-vant parameters obtained before and after operation between the two groups.Results:No statistically significant differences were ob-served in the operation time and bladder irrigation time between the two groups(P>0.05).More glandular tissues were removed but less intraoperative bleeding and fewer perioperative complications occurred in the US-TUERP group than in the control.Compared with the baseline,IPSS,postvoid residual urine volume(PVR),quality of life score(QOL)and maximum urinary flow rate(Qmax)were significantly improved in both groups at 1 and 3 months after surgery,even more significantly in the US-TUERP than in the control group(P<0.05).Conclusion:US-TUERP helps achieve complete resection of the hyperplastic prostatic tissue along the surgical capsule at the anatomical level,with a higher safety,fewer perioperative complications,and better therapeutic effects.
10.Application of China-made Toumai? Robot in laparoscopic radical prostatectomy
Zhi-Feng WEI ; Yu-Hao CHEN ; Ze-Peng ZHU ; Qi JIANG ; Yu XIONG ; Feng-Feng LU ; Zhen-Qian SONG ; Bin JIANG ; Xiao-Feng ZHU ; Tian-Hao FENG ; Xiao-Feng XU ; Gang YANG ; Wu WEI ; Ai-Bing YAO ; Jing-Ping GE
National Journal of Andrology 2024;30(8):696-700
Objective:To evaluate the safety and efficiency of China-made Toumai Robot-assisted laparoscopic radical prosta-tectomy(LRP).Methods:This study included 40 cases of PCa treated from January 2023 to May 2023 by robot-assisted LRP with preservation of the bladder neck and maximal functional urethral length,15 cases with the assistance of Toumai Robot(the TMR group)and the other 25 with the assistance of da Vinci Robot as controls(the DVR group).We recorded the docking time,laparo-scopic surgery time,vesico-urethral anastomosis time,intraoperative blood loss and postoperative urinary continence,and compared them between the two groups.Results:Operations were successfully completed in all the cases.No statistically significant differ-ences were observed between the TMR and DVR groups in the docking time(6 min vs 5 min,P>0.05)or intraoperative blood loss(200 ml vs 150 ml,P>0.05).The TMR group,compared with the DVR group,showed a significantly longer median laparoscopic surgery time(146 min vs 130 min,P<0.05)and median vesico-urethral anastomosis time(19 min vs 16 min,P<0.05).There were no statistically significant differences between the TMR and DVR groups in the rates of urinary continence recovery immediately af-ter surgery(60.0%[9/15]vs 64.0%[16/25],P>0.05)or at 1 month(80.0%[12/15])vs(76.0%[19/25],P>0.05),3 months(93.3%[14/15])vs(92.0%[23/25],P>0.05)and 6 months postoperatively(100%[15/15])vs(96%[24/25],P>0.05).Conclusion:China-made Toumai? Robot surgical system is safe and reliable for laparoscopic radical prosta-tectomy,with satisfactory postoperative recovery of urinary continence.

Result Analysis
Print
Save
E-mail