3.Carnosic acid inhibits osteoclast differentiation by inhibiting mitochondrial activity
Haishan LI ; Yuheng WU ; Zixuan LIANG ; Shiyin ZHANG ; Zhen ZHANG ; Bin MAI ; Wei DENG ; Yongxian LI ; Yongchao TANG ; Shuncong ZHANG ; Kai YUAN
Chinese Journal of Tissue Engineering Research 2025;29(2):245-253
BACKGROUND:Carnosic acid,a bioactive compound found in rosemary,has been shown to reduce inflammation and reactive oxygen species(ROS).However,its mechanism of action in osteoclast differentiation remains unclear. OBJECTIVE:To investigate the effects of carnosic acid on osteoclast activation,ROS production,and mitochondrial function. METHODS:Primary bone marrow-derived macrophages from mice were extracted and cultured in vitro.Different concentrations of carnosic acid(0,10,15,20,25 and 30 μmol/L)were tested for their effects on bone marrow-derived macrophage proliferation and toxicity using the cell counting kit-8 cell viability assay to determine a safe concentration.Bone marrow-derived macrophages were cultured in graded concentrations and induced by receptor activator of nuclear factor-κB ligand for osteoclast differentiation for 5-7 days.The effects of carnosic acid on osteoclast differentiation and function were then observed through tartrate-resistant acid phosphatase staining,F-actin staining,H2DCFDA probe and mitochondrial ROS,and Mito-Tracker fluorescence detection.Western blot and RT-PCR assays were subsequently conducted to examine the effects of carnosic acid on the upstream and downstream proteins of the receptor activator of nuclear factor-κB ligand-induced MAPK signaling pathway. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining and F-actin staining showed that carnosic acid dose-dependently inhibited in vitro osteoclast differentiation and actin ring formation in the cell cytoskeleton,with the highest inhibitory effect observed in the high concentration group(30 μmol/L).Carnosic acid exhibited the most significant inhibitory effect during the early stages(days 1-3)of osteoclast differentiation compared to other intervention periods.Fluorescence imaging using the H2DCFDA probe,mitochondrial ROS,and Mito-Tracker demonstrated that carnosic acid inhibited cellular and mitochondrial ROS production while reducing mitochondrial membrane potential,thereby influencing mitochondrial function.The results of western blot and RT-PCR revealed that carnosic acid could suppress the expression of NFATc1,CTSK,MMP9,and C-fos proteins associated with osteoclast differentiation,and downregulate the expression of NFATc1,Atp6vod2,ACP5,CTSK,and C-fos genes related to osteoclast differentiation.Furthermore,carnosic acid enhanced the expression of antioxidant enzyme proteins and reduced the generation of ROS during the process of osteoclast differentiation.Overall,carnosic acid exerts its inhibitory effects on osteoclast differentiation by inhibiting the phosphorylation modification of the P38/ERK/JNK protein and activating the MAPK signaling pathway in bone marrow-derived macrophages.
4.Effect of Tuina at "Weizhong (BL 40)" on Spinal Microglial Activation-related Proteins and the IL-10/β-EP Pathway in a Rat Model of Chronic Sciatic Nerve Compression Injury
Tianwei ZHANG ; Xiangqian LYU ; Yani XING ; Liuchen ZHU ; Qingguang ZHU ; Lingjun KONG ; Yanbin CHENG ; Zhen YAN ; Wuquan SUN ; Min FANG ; Zhiwei WU
Journal of Traditional Chinese Medicine 2025;66(7):734-740
ObjectiveTo investigate the analgesic effect of Tuina at the "Weizhong (BL 40)" on neuropathic pain in a rat model of chronic constriction injury (CCI) of the sciatic nerve and its potential central spinal mechanisms. MethodsThirty-two Sprague-Dawley rats were randomly divided into four groups (8 rats in each group), sham-operated group, model group, Tuina group, and blockade group. The CCI model was established in the model group, Tuina group, and the blockade group by ligating the sciatic nerve with catgut, while the sham-operated group underwent only sciatic nerve exposure without ligation. From postoperative day 4 to day 14, rats in the Tuina group and the blockade group received Tuina manipulation at the "Weizhong (BL 40)" using a dynamic pressure distribution measurement system (5 N pressure, 2 Hz frequency, 10 min per session, once daily). The blockade group also received intraperitoneal injections of the microglial inhibitor minocycline (10 mg/kg) once daily. The sham-operated and the model group underwent the same handling and fixation as the Tuina group without actual Tuina. Mechanical withdrawal threshold (MWT) and paw withdrawal latency (PWL) were measured before surgery and on day 3, 7, 10, and 14 post-surgery. Transmission electron microscopy was used to evaluate sciatic nerve injury and repair, measuring axon diameter and total myelinated fiber diameter to calculate the g-ratio. Western Blotting was performed to detect the protein levels of ionized calcium-binding adapter molecule 1 (Iba-1), CD206, CD68, interleukin-10 (IL-10), and β-endorphin (β-EP) precursor pro-opiomelanocortin (POMC) in the ipsilateral spinal dorsal horn. ResultsCompared with the sham-operated group, the model group showed significantly reduced MWT and PWL on day 3, 7, 10, and 14 (P<0.01). Compared with the model group, the Tuina group and the blockade group showed increased MWT and PWL on day 10 and 14 (P<0.05). Compared with the Tuina group, the blockade group exhibited higher MWT on day 7, 10, and 14, and higher PWL on day 10 (P<0.05). Sciatic nerve pathological morphology revealed intact and well-structured myelin in the sham-operated group, while the model group exhibited myelin collapse, distortion, and myelin ovoid formation. The Tuina group displayed partially irregular myelin with occasional myelin collapse, whereas the blockade group exhibited partial myelin irregularities and phospholipid shedding. Compared with the sham-operated group, the model group showed a decreased g-ratio and increased levels of Iba-1 and CD68 in the spinal dorsal horn (P<0.05 or P<0.01). Compared with the model group, the Tuina group and the blockade group exhibited an increased g-ratio and reduced Iba-1 and CD68 levels. Additionally, the Tuina group showed elevated levels of CD206, IL-10, and POMC, whereas the blockade group had decreased CD206 levels (P<0.05). ConclusionTuina at "Weizhong (BL 40)" alleviates neuropathic pain in CCI rats, potentially by regulating microglial activation in the spinal cord, inhibiting M1 polarization while promoting M2 polarization, and activating the IL-10/β-EP pathway to exert analgesic effects.
6.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
7.Research progress of digital health intervention platforms for perinatal depression
SONG Zhen ; ZHANG Jiayi ; WU Dadong ; GONG Ni
Journal of Preventive Medicine 2025;37(9):907-912
Perinatal depression (PND) is a critical public health issue affecting maternal and offspring health. Digital health intervention platforms, leveraging advantages in accessibility, privacy, and cost-effectiveness, demonstrate good application in PND prevention and treatment. This review systematically searched literature and policy documents published between January 2018 and March 2025 in CNKI, PubMed, Web of Science and World Health Organization. It summarized the development trajectory of digital health intervention platforms and their current applications and effectiveness in PND prevention and treatment. Existing evidence was evaluated across dimensions of efficacy, systematicity, and practicality, identifying major challenges faced by these platforms. Studies indicate that while PND digital health intervention platforms have achieved preliminary success in alleviating PND symptoms, widespread issues persist, including incomplete service closed-loop systems, low user adherence, and insufficient sustainability. Future efforts should focus on optimizing intervention content and interactive design, advancing intelligent assessment and tiered intervention strategies, strengthening continuous monitoring and crisis response mechanisms, and constructing a multidisciplinary collaborative support system. These steps are essential for achieving efficient, intelligent, and sustainable development of digital health intervention platforms for PND.
8.Determination of radionuclide levels in food and assessment of effective dose in Beijing, China
Huan WANG ; Yaru SUN ; Meinan YAO ; Yongzhong MA ; Shuchang YAN ; Hui ZHANG ; Zhen WU ; Bin BAI
Chinese Journal of Radiological Health 2025;34(5):733-739
Objective To investigate the levels of radionuclides in food in Beijing, China, and assess the committed effective dose to local residents from food intake. Methods From 2021 to 2022, a total of 65 food samples across 7 categories were collected in Beijing. The activity concentrations of radionuclides, including 137Cs, 210Pb, 238U, 228Ra, 226Ra, 40K, 90Sr, 210Po, 3H and 14C, were measured using gamma spectrometry and radiochemical methods. By combining the monitoring results with dietary consumption data of Beijing residents and the internal dose coefficients for Chinese reference adult phantom, the committed effective dose was estimated. Results The levels of radionuclides in food in Beijing were within the normal background range, consistent with related surveys in China and abroad, with activity concentrations below national standard limits. No significant differences were found in the activity concentrations of 137Cs, 238U, 228Ra, 226Ra and 40K between food samples collected from key areas and those from control areas (P > 0.05). The committed effective doses calculated according to internal dose coefficients for Chinese reference adult male phantom and GB 18871-2002 were 0.26 mSv and 0.19 mSv, respectively. Based on the Chinese reference adult male phantom, the majority of the committed effective dose was attributed to 210Pb (45.1%), 228Ra (37.1%), 210Po (12.3%), and 226Ra (4.7%). Conclusion The levels of radionuclides in food in Beijing fluctuated within the background range, resulting in a low radiation dose burden to the population.
9.Development of a droplet digital polymerase chain reaction assay for the sensitive detection of total and integrated HIV-1 DNA
Lin YUAN ; Zhiying LIU ; Xin ZHANG ; Feili WEI ; Shan GUO ; Na GUO ; Lifeng LIU ; Zhenglai MA ; Yunxia JI ; Rui WANG ; Xiaofan LU ; Zhen LI ; Wei XIA ; Hao WU ; Tong ZHANG ; Bin SU
Chinese Medical Journal 2024;137(6):729-736
Background::Total human immunodeficiency virus (HIV) DNA and integrated HIV DNA are widely used markers of HIV persistence. Droplet digital polymerase chain reaction (ddPCR) can be used for absolute quantification without needing a standard curve. Here, we developed duplex ddPCR assays to detect and quantify total HIV DNA and integrated HIV DNA.Methods::The limit of detection, dynamic ranges, sensitivity, and reproducibility were evaluated by plasmid constructs containing both the HIV long terminal repeat (LTR) and human CD3 gene (for total HIV DNA) and ACH-2 cells (for integrated HIV DNA). Forty-two cases on stable suppressive antiretroviral therapy (ART) were assayed in total HIV DNA and integrated HIV DNA. Correlation coefficient analysis was performed on the data related to DNA copies and cluster of differentiation 4 positive (CD4 +) T-cell counts, CD8 + T-cell counts and CD4/CD8 T-cell ratio, respectively. The assay linear dynamic range and lower limit of detection (LLOD) were also assessed. Results::The assay could detect the presence of HIV-1 copies 100% at concentrations of 6.3 copies/reaction, and the estimated LLOD of the ddPCR assay was 4.4 HIV DNA copies/reaction (95% confidence intervals [CI]: 3.6-6.5 copies/reaction) with linearity over a 5-log 10-unit range in total HIV DNA assay. For the integrated HIV DNA assay, the LLOD was 8.0 copies/reaction (95% CI: 5.8-16.6 copies/reaction) with linearity over a 3-log 10-unit range. Total HIV DNA in CD4 + T cells was positively associated with integrated HIV DNA ( r = 0.76, P <0.0001). Meanwhile, both total HIV DNA and integrated HIV DNA in CD4 + T cells were inversely correlated with the ratio of CD4/CD8 but positively correlated with the CD8 + T-cell counts. Conclusions::This ddPCR assay can quantify total HIV DNA and integrated HIV DNA efficiently with robustness and sensitivity. It can be readily adapted for measuring HIV DNA with non-B clades, and it could be beneficial for testing in clinical trials.
10.Radix Angelica Sinensis and Radix Astragalus ultrafiltration extract improves radiation-induced pulmonary fibrosis in rats by regulating NLRP3/caspase-1/GSDMD pyroptosis pathway
Chun-Zhen REN ; Jian-Fang YUAN ; Chun-Ling WANG ; Xiao-Dong ZHI ; Qi-Li ZHANG ; Qi-Lin CHEN ; Xin-Fang LYU ; Xiang GAO ; Xue WU ; Xin-Ke ZHAO ; Ying-Dong LI
Chinese Pharmacological Bulletin 2024;40(11):2124-2131
Aim To investigate the mechanism of py-roptosis mediated by the NLRP3/caspase-1/GSDMD signaling pathway and the intervention effect of Radix Angelica Sinensis and Radix Astragalus ultrafiltration extract(RAS-RA)in radiation-induced pulmonary fi-brosis.Methods Fifty Wistar rats were randomly di-vided into five groups,with ten rats in each group.Ex-cept for the blank control group,all other groups of rats were anesthetized and received a single dose of 40 Gy X-ray local chest radiation to establish a radiation-in-duced pulmonary fibrosis rat model.After radiation,the rats in the RAS-RA intervention groups were orally administered doses of 0.12,0.24 and 0.48 g·kg-1 once a day for 30 days.The average weight and lung index of the rats were observed after 30 days of contin-uous administration.Hydroxyproline(HYP)content in lung tissue was determined by hydrolysis method.The levels of IL-18 and IL-1 β in serum were detected by ELISA.Lung tissue pathological changes were ob-served by HE and Masson staining.Ultrastructural changes in lung tissue were observed by transmission e-lectron microscopy.The expression levels of NLRP3/caspase-1/GSDMD pyroptosis pathway-related proteins and fibrosis-related proteins in lung tissue were detec-ted by Western blot.Results Compared with the blank group,the HYP content in lung tissue and the levels of IL-18 and IL-1 β in serum significantly in-creased in the model group(P<0.01).HE and Mas-son staining showed inflammatory cell infiltration and collagen fiber deposition.Transmission electron mi-croscopy revealed increased damaged mitochondria,disordered arrangement,irregular morphology,shallow matrix,outer membrane rupture,mostly fractured and shortened cristae,mild expansion,increased electron density of individual mitochondrial matrix,mild sparse structure of lamellar bodies,partial disorder,unclear organelles,and characteristic changes of pyroptosis.Western blot analysis showed increased expression of caspase-1,GSDMD,NLRP3,CoL-Ⅰ,α-SMA,and CoL-Ⅲ proteins(P<0.01).Compared with the model group,the RAS-RA intervention group showed signifi-cant improvement in body mass index and lung index of rats,decreased levels of IL-18 and IL-1 β inflammatory factors(P<0.01),improved mitochondrial structure,reduced degree of fibrosis,and decreased expression of caspase-1,GSDMD,NLRP3,COL-Ⅰ,COL-Ⅲ,and α-SMA proteins in lung tissue(P<0.01).Conclusion RAS-RA has an inhibitory effect on radiation-in-duced pulmonary fibrosis,and its mechanism may be related to the inhibition of pyroptosis through the regu-lation of the NLRP3/caspase-1/GSDMD signaling pathway.


Result Analysis
Print
Save
E-mail