1.Research on localization practice of the clinical application integration course in sino-foreign cooperative clinical medicine program
Diansa GAO ; Tao LUO ; Zhiyong ZHANG ; Xuan ZHANG ; Que ZHU ; Guobin YIN ; Zhen QUAN
Chinese Journal of Medical Education Research 2024;23(10):1363-1368
Among the current curricula of medical teaching in China, most courses focus on the integrated teaching of a single organ-system combination, while there are relatively a few integrated courses that focus on the multiple dimensions between different organs and systems and between medical sciences and social sciences. In 2016, Chongqing Medical University started to cooperate with University of Leicester to establish the clinical medicine major and introduced the course of Integration for Clinical Application (ICA) that had been run well in University of Leicester for years. With reference to the education goal of our university, the curriculum group adopted a series of actions for the localization of this course from the aspects of teaching objectives, contents, teaching model, education resources, and quality of faculty. After the completion of the first round of this course, the passing rate reached 86.96%(100/115) in the quantified evaluation of accomplishment, which was higher than the passing rate of other courses introduced from University of Leicester. The quantitative expert assessment of this course also ranked among the top courses in our university, and student assessment showed that the ability indicators were improved by 25.00%- 38.00%. The above data show that good results have been achieved for the curriculum localization of ICA.
2.Molecular epidemiological characteristics of human infection with avian influenza A(H7N9)virus in Xinjiang from 2014 to 2018
Zhen-Guo GAO ; Muti-Mahe ; Jun ZHAO ; Jia HUANG ; Xuan ZHANG ; Yuan CHEN ; Lina·Turxunbayi ; Quan-Xi LI ; Xin MA
Chinese Journal of Zoonoses 2024;40(8):774-781
This study was aimed at analyzing the molecular epidemiological characteristics of all 14 cases of human infection with avian influenza A(H7N9)virus in Xinjiang from 2014 to 2018,to provide a scientific basis for prevention,control,and treatment.The genomic sequence was obtained through high-throughput gene sequencing after nucleic acid extraction.Homolo-gy analysis,evolution analysis,mutation locus analysis,and homology modeling were performed in bioinformatics analysis software.The nucleotide homology and amino acid homology of the HA gene in 14 human infected H7N9 viruses were(97.39%-100%)and(98.38%-100%),respectively.The nucleotide homology of the NA gene and the amino acid homology ranged from 97.73%to 100%.All viruses were low pathogenic avian influenza viruses belonging to the Yangtze River Delta lin-eage and were divided into two subclades,which were most similar to the A/Hunan/02650/2016 vaccine strain.All HA pro-teins G186V and T160A were mutated;13 strains of Q226L were mutated;and none of the four key neuraminidase inhibitor resistance sites of NA protein were mutated.All sites of M2 protein S31N and V27A were mutated,all sites of PB1 protein T368V were mutated,and all sites of PA protein K356R were mutated.Xinjiang H7N9 virus exhibited double receptor bind-ing,and was resistant to amantadine drugs and sensitive to neuraminidase inhibitors,which may be used in early disease sta-ges.Strengthened monitoring and timely detection of avian in-fluenza virus genome changes will be critical for prevention and control,and formulation of countermeasures.
3.Structure and Function of the PR-DUB Complex and Its Role in the Development of Haematological Tumours
Wen-Wen ZHANG ; Fu-Quan JIANG ; Zhen-Hua CHEN
Chinese Journal of Biochemistry and Molecular Biology 2024;40(7):879-888
The polycomb repressive deubiquitinase complex(PR-DUB)is a member of the polycomb group protein involved in the epigenetic modification of chromosomes by regulating histone modifications.The polycomb repressive complex 1(PRC1)and PR-DUB complex protect active genes from aberrant si-lencing through a balance of ubiquitination and deubiquitination modifications of H2AK119Ub.The deu-biquitination function of the PR-DUB complex is associated with the promotion of gene activation and the establishment of transcriptionally permissive chromatin states,in addition to the activation of enhancers and the facilitation of DNA damage repair at double-strand breaks.Additional sex combs-like 1(ASXL1)serves as an epigenetic scaffold for the assembly of chromatin-modifying complexes and tran-scription factors involved in epigenetic regulation.BRCA1-associated protein 1(BAP1)acts as a deubiq-uitinating enzyme to remove ubiquitination modification of substrates.The PR-DUB complex consists of a core dimer and other cofactors.BAP 1 forms a core dimer with ASXL1,and other subunits interact to reg-ulate the targeting and functioning of the PR-DUB complex.ASXL1 and BAP1 are the two subunits most relevant to the deubiquitination function of the PR-DUB complex,and the DEUBAD domain of ASXL1 activates BAP1 to exert its deubiquitination function to hydrolyze H2AK119Ub1.Understanding the struc-ture and interaction mechanism of ASXL1 and BAP1 is essential to study the mechanism of deubiquitina-tion specific to the PR-DUB complex.In humans,mutations in the components of the PR-DUB complex frequently cause a variety of hematologic neoplasms.Mutations in the ASSXL1 gene often result in prema-ture termination of protein translation,mostly due to the absence of the C-terminal PHD domain.The in-teraction of mutated ASXL1 or BAP1,epigenetic factors,and targets or signaling pathways such as Akt/mTOR in PR-DUB is now considered as a possible mechanism to promote the development of hematologi-cal tumors.This is crucial for the research and development of new specific targeted therapeutic agents a-gainst potential therapeutic targets.In this paper,focusing on ASXL1 and BAP1,we will introduce the structure and function of the PR-DUB complex,and its mechanism in the occurrence of hematological tumor diseases,and systematically summarize the potential targeted therapeutic drugs,with a view to pro-viding scientific references for the research of the PR-DUB complex in the prevention and treatment of he-matological diseases.
4.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
5.Construction and simulation of medical resources demand model during epidemic events of infectious diseases
Dong WANG ; Yong-Quan TIAN ; Wei ZHANG ; Hong-Shu ZHOU ; Bo XIE ; Zhen-Yan LI ; Si-Hai FAN ; Su-Juan HUANG
Chinese Journal of Infection Control 2024;23(10):1286-1294
Objective To construct the demand model of four types of medical resources including beds in hospi-tal,beds in intensive care unit(ICU),ventilators and medical human resources during the major infectious disease epidemic events,simulate and analyze the treatment of infectious diseases when different medical resources are in short supply.Methods Based on the susceptible-exposed-infectious-recovered(SEIR)model,considering the infec-tivity of infected persons,the susceptibility of the population and the immunity of convalescents,the characteristics of asymptomatic COVID-19 patients and different clinical types,the"COVID-19 infection-hospitalization model"was constructed.By collecting and setting the parameters of disease transmission,clinical course and medical re-source shortage scenarios,an analysis model of allocation and supply of urban medical resources during infectious di-sease epidemic events was initially formed based on Anylogic platform,the supply and demand of medical resources during infectious disease events in different scenarios were analyzed.Results In the non-intervention scenario,the peak time of bed demand was on the 107th day,and the peak value was 160.92 beds per thousand people;the peak time of ventilator demand was on the 122nd day,and the peak value was 5.61 units per thousand people;the peak time of ICU bed demand was on the 117th day,and the peak value was 12.78 beds per thousand people;the peak time of the demand for medical human resources was on the 109th day,and the peak value was 151.12 persons per thousand persons.The simulation results suggested that there were some differences in the impact of different medi-cal resources on the outcome of medical treatment.Conclusion This study constructs an analytical tool for the allo-cation and supply of urban medical resources under the epidemic events of infectious diseases,and the results of mul-tiple simulation experiments suggest that bed resources and medical human resources play more important roles in the outcome of medical treatment.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Clinical study of sacubitril valsartan sodium combined with Wenxin granule in the treatment of hyper-tension complicated with paroxysmal atrial fibrillation
Yong HOU ; Lian-Fa WANG ; Hong-Tao LU ; Zhen CHEN ; Meng-Xun HUANG ; Chen CHEN ; Bang-Zhu ZHANG ; Quan-Xiu TONG ; Yun-Fei WANG
Chinese Journal of cardiovascular Rehabilitation Medicine 2024;33(1):40-44
Objective:To explore therapeutic effect of sacubitril valsartan sodium combined with Wenxin granule in the treatment of hypertension complicated with paroxysmal atrial fibrillation(AF)and its effect on cardiac electro-physiological structure.Methods:A total of 116 patients with hypertension and paroxysmal atrial fibrillation treated in our hospital from Oct 2021 to Nov 2022 were consecutively selected.According to random number table,they were divided into Wenxin granule group(received Wenxin granule treatment based on routine antihypertensive ther-apy)and combined treatment group(received sacubitril valsartan sodium combined Wenxin granule therapy based on routine antihypertensive therapy)with 58 cases in each group,and both groups were consecutively treated for six months.Clinical symptom score,AF burden,P wave duration,P wave dispersion,left atrial diameter(LAD),left ventricular end-diastolic diameter(LVEDd)and left ventricular ejection fraction(LVEF)were compared between two groups before and after treatment.Results:After treatment,compared with Wenxin granule group,there were significant reductions in clinical symptom score[(1.66±0.69)scores vs.(1.40±0.53)scores],AF burden[4.43(1.65)%vs.1.62(3.50)%],P wave duration[(112.17±6.46)ms vs.(109.29±8.59)ms],P wave dispersion[(32.47±8.11)ms vs.(29.02±7.49)ms]and LAD[(34.83±3.41)mm vs.(33.40±3.74)mm]in combined treatment group(P<0.05 or<0.01).There were no significant difference in LVEDd and LVEF between two groups,P>0.05 both.Conclusion:Sacubitril valsartan sodium combined with Wenxin granule can significantly im-prove clinical symptoms and atrial fibrillation burden,reduce the susceptibility to atrial fibrillation,and inhibit atrial electrical remodeling and structural remodeling in patients with hypertension complicated with paroxysmal atrial fi-brillation.
8.Liuwei Dihuang Pills-elicited inhibition of MMP-2/MMP-9 via RAGE on tight junction protein of Aβ1-40-injured bEnd.3 cells
Rui DING ; Yong YUAN ; Ya-Quan JIA ; Ai-She GAO ; Zhen-Qiang ZHANG ; Jun-Ying SONG
Chinese Traditional Patent Medicine 2024;46(2):424-430
AIM To investigate the protective effects and the mechanism of the Liuwei Dihuang Pills on mouse brain microvascular endothelial(bEnd.3)cells damaged by β-Amyloid protein1-40(Aβ1-40).METHODS CCK8 method was used to detect the effects of Aβ1-40 and medicated serum of Liuwei Dihuang Pills(MSLDP)on cell activity,and to screen the appropriate concentration.bEnd.3 cells of the control group,the Aβ1-40 group,the MSLDP+Aβ1-40 group and the MSLDP group had their low density lipoprotein-associated protein 1(LRP1),receptor for advanced glycation end products(RAGE),matrix metalloproteinase-2(MMP-2),MMP-9,scaffold protein zonule protein-1(ZO-1)detected by Western blot.bEnd.3 cells assigned into the control group,the Aβ1-40 group,the FPS-ZM1(RAGE inhibitor)+Aβ1-40 group and the FPS-ZM1+Aβ1-40+MSLDP group had their expressions of RAGE,MMP-9,MMP-2 and ZO-1 detected by Western blot as well.RESULTS The cell activity of bEnd.3,was dose-dependently decreased by Aβ1-40(P<0.01),but was protected by MSLDP(P<0.05,P<0.01).And 10 μmol/L Aβ1-40 and 10%MSLDP were selected for subsequent experiments.Compared with the control group,the Aβ1-40 group displayed increased protein expressions of RAGE,MMP-2 and MMP-9(P<0.01),decreased protein expressions of LRP1,ZO-1 and BDNF(P<0.05,P<0.01),and decreased fluorescence intensities of LRP1 and ZO-1(P<0.01).Compared with the Aβ1-40 group,the MSLDP group shared decreased expressions of RAGE,MMP-2,MMP-9 proteins and RAGE fluorescence intensity(P<0.05,P<0.01),and increased expressions of LRP1,ZO-1 and BDNF proteins,and the fluorescence intensity of LRP1 and ZO-1(P<0.05,P<0.01);the Aβ1-40+FPS-ZM1 group displayed decreased protein expressions of MMP-2,MMP9 and RAGE(P<0.05,P<0.01),and increased ZO-1 protein expression(P<0.05);and the Aβ1-40+FPS-ZM1+ MSLDP group displayed an even more decreased protein expressions of MMP-2,MMP9 and RAGE(P<0.01),increased ZO-1 protein expression(P<0.01)due to the the combination use of FPS-ZM1 and MSLDP.CONCLUSION Liuwei Dihuang Pills can protect the tight junction of bEnd.3 injured by Aβ1-40 and neurovascular units from Alzheimer's disease by alleviating the dysfunction of the blood-brain barrier via RAGE-mediated MMP-2/MMP-9 pathway inhibition.
9.Genetic Polymorphism of 42 Autosomal STR Loci from Chinese Han Population in Shenzhen
Yanping ZHONG ; Litao WU ; Zhen LI ; Dan ZHOU ; Zhanrou QUAN ; Shuang LIANG ; Zhihui DENG ; Yinming ZHANG
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(5):739-744
[Objective]To investigate the genetic polymorphism of 42 short tandem repeats(STRs),including 41 non-CODIS loci from the Shenzhen Han population and evaluate their potential values in forensic application.[Methods]In our research,the AGCU 21+1 STR kit and Microreader? 23sp Direct ID System were applied to analyze the polymorphism of STR loci from 435 unrelated individuals of Shenzhen Han population.Modified-Powerstates and Arlequin v3.5 software were used to analyze the allele frequencies and forensic parameters,and perform the Hardy-Weinberg equilibrium test.[Results]A total of 418 alleles were detected from 435 unrelated individuals in Shenzhen,all consistent with Hardy-Weinberg equilibrium(P>0.05/42),with the allele frequency ranging from 0.001 1 to 0.552 9.Besides,the discrimination power(DP)ranged from 0.798 8(D1S1627)to 0.968 6(D7S3048),the polymorphic information content(PIC)ranged from 0.568 0(D1S1627)to 0.859 8(D7S3048),and the heterozygosity(H)ranged from 0.627 6(D1S1627)to 0.878 2(D20S470).Among all the STRs tested in the study,both D1S1656 and D21S1270 have 16 alleles and show the highest polymorphism.In comparison,only five alleles were observed in the D4S2408 locus,which displays the least polymorphism.[Conclusions]The 42 autosomal STR loci with high genetic polymorphism in Shenzhen Han population showed potential as an effective means for individual identification and paternity testing,especially in the cases with single parent or mutation detected.The obtained information can provide basic data for STR population genetics.
10.Determination of 19 components in Microctis Folium from different production areas based on UPLC-MS/MS
Min-you HE ; Li-wei WANG ; Lin LIU ; Po-yu ZHANG ; Jin-quan LAN ; Xin-ya WAN ; Zhen-yu LI ; Xiang-dong CHEN ; Dong-mei SUN
Acta Pharmaceutica Sinica 2024;59(5):1374-1381
The paper is to establish an UPLC-MS/MS method for the simultaneous determination of 19 components in Microctis Folium from different production areas. The 50% methanol was used as extraction solvent. The Agilent ZORBAX SB C18 (150 mm × 2.1 mm, 1.8 μm) column was used; mobile phase was acetonitrile - 0.1% acetic acid with gradient elution, flow rate was 0.3 mL·min-1, colume temperature was 30 ℃, and the injection volume was 2 μL; electrospray ionizaton source was used and detected in negative ion mode. The results showed that the established UPLC-MS/MS method could well separate the 19 components, and the methodological investigation results of 19 components were good. By means of orthogonal partial least squares discriminant analysis (OPLS-DA), 28 batches of Microctis Folium samples from different production areas can be divided into three categories, Guangdong, Guangxi and Hainan are each classified into one category, and 10 signature compounds which affecting the quality differences of different production areas were screened out. The established method is accurate, reliable, sensitive and reproducible. It can provide a basis for the establishment of the quality standard of Microctis Folium, as well as for safety and quality research.

Result Analysis
Print
Save
E-mail