1.The Effects of Qufeng Tongqiao Cough-Relieving Decoction (祛风通窍止咳方) on Cough Sensitivity,TRPV4 in Lung and Nasal Mucosal Tissues,and Neurogenic Inflammation in a Guinea Pig Model of Upper Airway Cough Syndrome
Jingshu LUO ; Jianling MA ; Liqing SHI ; Kun JI ; Song LIU ; Yuhan FAN ; Xianli LI ; Zhaodi GUO
Journal of Traditional Chinese Medicine 2025;66(5):518-525
ObjectiveTo investigate the potential mechanism of action of the Qufeng Tongqiao Cough-relieving Decoction (祛风通窍止咳方, QTCD) in the treatment of upper airway cough syndrome (UACS). MethodsTwenty-four guinea pigs were randomly divided into blank group, model group, traditional Chinese medicine (TCM) group, and inhibitor group, with six guinea pigs in each group. Except for the blank group, guinea pigs were sensitized with ovalbumin and aluminum hydroxide via intraperitoneal injection, followed by ovalbumin nasal drops combined with smoke exposure to establish the UACS model. After modeling, the TCM group was administered QTCD 0.9 g/(100 g·d) by gavage, the inhibitor group received the transient receptor potential vanilloid receptor 4 (TRPV4) inhibitor GSK2193874 1 mmol/L, 5 min by nebulisation, and the blank group and model group were given 2 ml/(100 g·d) normal saline by gavage once daily. After 7 days of treatment, a cough provocation test was performed using 0.4 mol/L citric acid. The levels of IgE in serum and inflammatory cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8) in serum, bronchoalveolar lavage fluid (BALF), and nasal lavage fluid (NLF) were detected by enzyme-linked immunosorbent assay (ELISA). Histopathological changes in lung and nasal mucosal tissues were observed by hematoxylin-eosin (HE) staining. Immunohistochemistry was used to detect the protein levels of TRPV4, substance P (SP), and calcitonin gene-related peptide (CGRP) in lung and nasal mucosal tissues. Real-time polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of TRPV4, SP, and CGRP in lung tissues. ResultsHE staining showed significant structural damage and infiltration of inflammatory cells in the lung and nasal mucosal tissues in the model group, while the TCM group and inhibitor group showed improved pathological changes. Compared with the blank group, the model group showed increased cough frequency, serum IgE level, and IL-6 and IL-8 levels in serum, BALF, and NLF. The protein levels of TRPV4, SP, and CGRP in lung and nasal mucosal tissues and their mRNA expression were elevated (P<0.05 or P<0.01). Compared with the model group, the TCM group and inhibitor group showed reduced cough frequency, serum IgE level, and TRPV4 and SP mRNA expression in lung tissues. The TCM group showed reduced IL-6 and IL-8 levels in serum, BALF, and NLF, and reduced TRPV4 and CGRP protein levels in lung and nasal mucosal tissues. The inhibitor group showed reduced IL-6 and IL-8 levels in serum, BALF, and NLF, reduced IL-6 in BALF, reduced IL-8 in NLF, and decreased TRPV4, SP, and CGRP protein levels in lung tissues and SP and CGRP protein levels in nasal mucosal tissues (P<0.05 or P<0.01). Compared with the TCM group, the inhibitor group had increased serum IgE, IL-6, and IL-8 levels, increased IL-6 level in BALF, and increased IL-8 levle in NLF, but decreased SP protein level in lung tissues and increased TRPV4 and SP mRNA expression in lung tissues (P<0.01). ConclusionQTCD effectively reduces cough frequency in the UACS guinea pig model. Its mechanism may involve inhibiting the activation of the TRPV4 pathway, improving airway neurogenic inflammation, alleviating inflammatory responses, and reducing cough hypersensitivity.
2.The novel combination of astragaloside IV and formononetin protects from doxorubicin-induced cardiomyopathy by enhancing fatty acid metabolism.
Xinyue YU ; Zhaodi HAN ; Linling GUO ; Shaoqian DENG ; Jing WU ; Qingqing PAN ; Liuyi ZHONG ; Jie ZHAO ; Hui HUI ; Fengguo XU ; Zunjian ZHANG ; Yin HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1171-1182
Astragali Radix (AR), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy against various diseases, including cardiovascular conditions, over centuries of use. While doxorubicin serves as an effective chemotherapeutic agent against multiple cancers, its clinical application remains constrained by significant cardiotoxicity. Research has indicated that AR exhibits protective properties against doxorubicin-induced cardiomyopathy (DIC); however, the specific bioactive components and underlying mechanisms responsible for this therapeutic effect remain incompletely understood. This investigation seeks to identify the protective bioactive components in AR against DIC and elucidate their mechanisms of action. Through network medicine analysis, astragaloside IV (AsIV) and formononetin (FMT) were identified as potential cardioprotective agents from 129 AR components. In vitro experiments using H9c2 rat cardiomyocytes revealed that the AsIV-FMT combination (AFC) effectively reduced doxorubicin-induced cell death in a dose-dependent manner, with optimal efficacy at a 1∶2 ratio. In vivo, AFC enhanced survival rates and improved cardiac function in both acute and chronic DIC mouse models. Additionally, AFC demonstrated cardiac protection while maintaining doxorubicin's anti-cancer efficacy in a breast cancer mouse model. Lipidomic and metabolomics analyses revealed that AFC normalized doxorubicin-induced lipid profile alterations, particularly by reducing fatty acid accumulation. Gene knockdown studies and inhibitor experiments in H9c2 cells demonstrated that AsIV and FMT upregulated peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) and PPARα, respectively, two key proteins involved in fatty acid metabolism. This research establishes AFC as a promising therapeutic approach for DIC, highlighting the significance of multi-target therapies derived from natural herbals in contemporary medicine.
Animals
;
Doxorubicin/adverse effects*
;
Saponins/administration & dosage*
;
Isoflavones/pharmacology*
;
Rats
;
Cardiomyopathies/prevention & control*
;
Mice
;
Fatty Acids/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Triterpenes/administration & dosage*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Cardiotonic Agents/administration & dosage*
;
Mice, Inbred C57BL
;
Cell Line
;
Astragalus Plant/chemistry*
;
Astragalus propinquus
3.Expression of transient receptor potential canonical 1 in ozone-induced inflammatory lung tissues in mice.
Zhaodi FU ; Lifen ZHOU ; Jianrong HUANG ; Shuyi GUO ; Jiechun ZHANG ; Yongbiao FANG ; Xiaoai LIU ; Qingzi CHNE ; Jianhua LI
Journal of Southern Medical University 2015;35(2):284-291
OBJECTIVETo detect the expression of transient receptor potential canonical 1 (TRPC1) in a mouse model of ozone-induced lung inflammation and explore its role in lung inflammation.
METHODSIn a mouse model of lung inflammation established by ozone exposure, the expression of TRPC1 in the inflammatory lung tissues was detected by RT-PCR, Wstern blotting and immunohistochemistry.
RESULTSCompared to the control mice, the mice exposed to ozone showed significantly increased expression level of TRPC1 mRNA and protein in the inflammatory lung tissues (P<0.05). Immunohistochemistry showed increased TRPC1 protein expressions in the alveolar epithelial cells, bronchial epithelial cells, and inflammatory cells in the inflammatory lung tissues (P<0.05). The mRNA and protein expression levels of TRPC1 were positively correlated with the counts of white blood cells, macrophages, neutrophils and lymphocytes in the bronchoalveolar lavage fluid of the exposed mice (P<0.01).
CONCLUSIONTRPC1 may play a role in ozone-induced lung inflammation in mice.
Animals ; Bronchoalveolar Lavage Fluid ; Disease Models, Animal ; Gene Expression ; Inflammation ; pathology ; Lung ; metabolism ; pathology ; Mice ; Ozone ; adverse effects ; Pneumonia ; metabolism ; pathology ; RNA, Messenger ; TRPC Cation Channels ; metabolism
4.Expression of transient receptor potential canonical 1 in ozone-induced inflammatory lung tissues in mice
Zhaodi FU ; Lifen ZHOU ; Jianrong HUANG ; Shuyi GUO ; Jiechun ZHANG ; Yongbiao FANG ; Xiaoai LIU ; Qingzi CHNE ; Jianhua LI
Journal of Southern Medical University 2015;(2):284-287,291
Objective To detect the expression of transient receptor potential canonical 1 (TRPC1) in a mouse model of ozone-induced lung inflammation and explore its role in lung inflammation. Methods In a mouse model of lung inflammation established by ozone exposure, the expression of TRPC1 in the inflammatory lung tissues was detected by RT-PCR, Wstern blotting and immunohistochemistry. Results Compared to the control mice, the mice exposed to ozone showed significantly increased expression level of TRPC1 mRNA and protein in the inflammatory lung tissues (P<0.05). Immunohistochemistry showed increased TRPC1 protein expressions in the alveolar epithelial cells, bronchial epithelial cells, and inflammatory cells in the inflammatory lung tissues (P<0.05). The mRNA and protein expression levels of TRPC1 were positively correlated with the counts of white blood cells, macrophages, neutrophils and lymphocytes in the bronchoalveolar lavage fluid of the exposed mice (P<0.01). Conclusion TRPC1 may play a role in ozone-induced lung inflammation in mice.
5.Expression of transient receptor potential canonical 1 in ozone-induced inflammatory lung tissues in mice
Zhaodi FU ; Lifen ZHOU ; Jianrong HUANG ; Shuyi GUO ; Jiechun ZHANG ; Yongbiao FANG ; Xiaoai LIU ; Qingzi CHNE ; Jianhua LI
Journal of Southern Medical University 2015;(2):284-287,291
Objective To detect the expression of transient receptor potential canonical 1 (TRPC1) in a mouse model of ozone-induced lung inflammation and explore its role in lung inflammation. Methods In a mouse model of lung inflammation established by ozone exposure, the expression of TRPC1 in the inflammatory lung tissues was detected by RT-PCR, Wstern blotting and immunohistochemistry. Results Compared to the control mice, the mice exposed to ozone showed significantly increased expression level of TRPC1 mRNA and protein in the inflammatory lung tissues (P<0.05). Immunohistochemistry showed increased TRPC1 protein expressions in the alveolar epithelial cells, bronchial epithelial cells, and inflammatory cells in the inflammatory lung tissues (P<0.05). The mRNA and protein expression levels of TRPC1 were positively correlated with the counts of white blood cells, macrophages, neutrophils and lymphocytes in the bronchoalveolar lavage fluid of the exposed mice (P<0.01). Conclusion TRPC1 may play a role in ozone-induced lung inflammation in mice.
6.The Clinical Observation of Experimental RDS in Dogs
Guoxian GU ; Xianjian GUO ; Baoling MAO ; Shiquan XIAO ; Zhaodi ZHAO ; Wei WANG ; Ansheng WANG ; Shengjian LI ; Xuemitlg HU ; Guangming LEI
Journal of Third Military Medical University 1984;0(02):-
Twenty-five hybrid dogs were injected intravenously with oleic acid of the dose 0.3 ml/kg of body weight to prepare a model of respiratory distress syndrome (RDS) . The animals were killed 24 hours after injection. PaO2, PaCO2 and pH of the arterial and mixed venous blood were determined before and immediately, 0.5, 1?2, 4, 6, 22 and 24 hours after injection. The average pulmonary arterial pressure was measured hourly. The chest x-ray films were taken 2,4, 6 and 24 hours after injection. The electrolytes T3, T4, the hematocrit and RBC count, and the serum corticosteroid level were measured before and 24 hours after injection.25 dogs were divided into two groups; the control group consisted of 8 dogs and the therapeutic group consisted of 17 dogs, among which nine were treated with hyosine hydrobromide and 8 with dexamethasone. The histologic specimens of the animals of the control group and hyosine hydrobromide treated group were examined with both light and electron microscopes but the specimens of the animals of dexamethasone treated group were examined with light microscope only.It was found that dexamethasone is effective in the treatment of RDS produced with oleic acid injection while hyosine hydrobromide is of no value.

Result Analysis
Print
Save
E-mail