1.Wen-Shen-Tong-Du Decoction promoting spinal cord injury repair in mice
Ruihua ZHAO ; Sixian CHEN ; Yang GUO ; Lei SHI ; Chengjie WU ; Mao WU ; Guanglu YANG ; Haoheng ZHANG ; Yong MA
Chinese Journal of Tissue Engineering Research 2025;29(6):1118-1126
BACKGROUND:Previous studies have confirmed that Wen-Shen-Tong-Du Decoction can promote the recovery of spinal cord injury by inhibiting pyroptosis of splenic B cells,promoting the phagocytosis of myelin debris by microvascular endothelial cells,affecting the migration and infiltration of microglia,promoting the recovery of damaged neurons,and decreasing neuronal apoptosis after spinal cord injury,but the mechanism of this is still not clear. OBJECTIVE:To investigate the effect of Wen-Shen-Tong-Du Decoction on the triggering receptor expressed on myeloid cells 2(TREM2)and PI3K/Akt signaling pathways in mice following spinal cord injury. METHODS:Thirty-six C57BL/6 mice were selected and randomly divided into a sham-operation group,a model group and a Wen-Shen-Tong-Du Decoction group,with 12 mice in each group.In the model and Wen-Shen-Tong-Du Decoction groups,mouse models of T10 spinal cord injury were prepared by the modified Allen's method.On the 1st day after modeling,the Wen-Shen-Tong-Du Decoction group was given Wen-Shen-Tong-Du Decoction by gavage,and the sham-operation group and the model group were given saline by gavage once a day for 28 days.During the drug administration period,mouse motor function was evaluated by Basso Mouse Scale score and inclined plane test.On the 7th and 28th days after modeling,hematoxylin-eosin staining was used to observe the histopathological changes in the spinal cord tissue of the mice;immunofluorescence double staining was used to detect the protein expression of ionized calcium binding adaptor molecule 1(IBA1)and TREM2;and western blot assay was used to detect the expression of TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2,Bax and Caspase3 in spinal cord tissue. RESULTS AND CONCLUSION:Basso Mouse Scale scores and inclined plane test results indicated that the motor function of the mouse hindlimbs was declined after spinal cord injury,and Wen-Shen-Tong-Du Decoction significantly improved motor function in mice with spinal cord injury.Hematoxylin-eosin staining results revealed that Wen-Shen-Tong-Du Decoction significantly ameliorated the pathological structure of spinal cord tissue compared with the model group,manifesting as reduced degrees of dorsal white matter and neuronal atrophy,decreased cytoplasmic vacuolization,and reduced inflammatory cell infiltration.Immunofluorescence double staining results showed that on the 7th day after modeling,the protein expression of IBA1 and TREM2 in the model group was lower than that in the sham-operation group(P<0.05),and the protein expression of IBA1 and TREM2 in the Wen-Shen-Tong-Du Decoction group was higher than that in the model group(P<0.05);on the 28th day after modeling,the protein expression of TREM2 in the model group was lower than that in the sham-operation group(P<0.05),and the protein expression of TREM2 in the spinal cord tissue of the mice in the Wen-Shen-Tong-Du Decoction group was higher than that in the model group(P<0.05).Western blot results analysis demonstrated that on the 7th day after modeling,compared with the sham-operation group,the model group exhibited a significant reduction in TREM2,PI3K,and Bcl2/Bax(P<0.05),as well as a significant increase in p-Akt,Bax and p-Akt/Aktp-PI3K(P<0.05);compared with the model group,the Wen-Shen-Tong-Du Decoction group showed a significant increase in TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2,p-PI3K/PI3K,p-Akt/Ak,and Bcl2/Bax(P<0.05),as well as a significant decrease in Bax and Caspase3 protein expression(P<0.05).On the 28th day after modeling,compared with the sham-operation group,the model group exhibited a significant reduction in TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2 and Bcl2/Bax(P<0.05),as well as a significant increase in Bax protein expression(P<0.05);compared with the model group,the Wen-Shen-Tong-Du Decoction group showed a significant increase in TREM2,PI3K,Akt,p-Akt,Bcl2,and Bcl2/Bax(P<0.05),as well as a significant decrease in Bax protein expression(P<0.05).To conclude,Wen-Shen-Tong-Du Decoction may activate the PI3K/Akt signaling pathway by up-regulating the expression of TREM2 protein in microglia,and then inhibit neuronal apoptosis,thus exerting neuroprotective effects and promoting the repair of spinal cord injury.
2.Exploration of Zhuyuwan in Treatment of Atherosclerosis from Perspective of Lipid Transport Disorder
Wei SONG ; Zhongyi ZHANG ; Hairong QIU ; Mei ZHAO ; Zubing ZHOU ; Tao SHEN ; Yong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):54-61
This article discusses the key pathogenesis of atherosclerosis (AS) based on the physiological characteristics and pathological changes of lipids and introduces the therapeutic effect of Zhuyuwan on AS, aiming to provide a theoretical basis for the treatment of cardiovascular diseases from the spleen. As essential substances, lipids have the same essence but different forms. They circulate throughout the body with body fluids under the action of Yang Qi to nourish the nutrient Qi and support the defensive Qi. Lipid metabolism disorder often leads to the obstruction of Qi movement, the accumulation of dampness and turbidity, and the generation of phlegm and blood stasis. It has been proven that the formation of vulnerable plaques in AS is attributed to the interaction of three pathogenic factors: deficiency of healthy Qi, phlegm-turbidity, and collateral stasis. Their pathological essence is closely related to abnormal lipid metabolism. As lipids constitute the thick and dense components of body fluids, their impaired dispersion may lead to phlegm-turbidity and blood stasis, the pathological process of which is predominantly ascribed to the dysfunction of the spleen in distributing essence. Therefore, AS is rooted in spleen-stomach disorder, manifests as plaques formed by pathological product accumulation in vessels, with lipid transport disorder as its core pathogenesis. Specifically speaking, the dysfunction of spleen in transportation with accumulation of dampness-turbidity marks the initial stage, and blood turbidity and coagulation and phlegm-nodules accumulating in vessels represent the intermediate phase. Cold accumulation and stagnated heat transforming into toxins represent the terminal stage. Zhuyuwan, first recorded in Taiping Holy Prescriptions for Universal Relief, contains equal proportions of Coptidis Rhizoma and Evodiae Fructus. Coptidis Rhizoma, bitter and cold, exerts descending and purging actions to assist stomach Qi in lowering turbidity. Evodiae Fructus, pungent-bitter and hot, disperses obstruction and promotes free flow to support spleen Qi in ascending the clear. The compatibility of Coptidis Rhizoma and Evodiae Fructus ascends the clear and descends the turbid to harmonize Yin and Yang, assisting the spleen in distributing essence and resolving lipid accumulation to reduce lipid levels. In terms of the therapeutic mechanism, Zhuyuwan modulates lipid metabolism by correcting immune-inflammation network imbalance, improving gut microbiota composition and metabolism, and enhancing reverse cholesterol transport. By analyzing the pathological characteristics of lipid transport disorder in AS, this study delves into the intrinsic connections between cardiovascular disease and lipid transport disorder, giving novel insights into the prevention and treatment of AS.
3.Exploration of Zhuyuwan in Treatment of Atherosclerosis from Perspective of Lipid Transport Disorder
Wei SONG ; Zhongyi ZHANG ; Hairong QIU ; Mei ZHAO ; Zubing ZHOU ; Tao SHEN ; Yong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):54-61
This article discusses the key pathogenesis of atherosclerosis (AS) based on the physiological characteristics and pathological changes of lipids and introduces the therapeutic effect of Zhuyuwan on AS, aiming to provide a theoretical basis for the treatment of cardiovascular diseases from the spleen. As essential substances, lipids have the same essence but different forms. They circulate throughout the body with body fluids under the action of Yang Qi to nourish the nutrient Qi and support the defensive Qi. Lipid metabolism disorder often leads to the obstruction of Qi movement, the accumulation of dampness and turbidity, and the generation of phlegm and blood stasis. It has been proven that the formation of vulnerable plaques in AS is attributed to the interaction of three pathogenic factors: deficiency of healthy Qi, phlegm-turbidity, and collateral stasis. Their pathological essence is closely related to abnormal lipid metabolism. As lipids constitute the thick and dense components of body fluids, their impaired dispersion may lead to phlegm-turbidity and blood stasis, the pathological process of which is predominantly ascribed to the dysfunction of the spleen in distributing essence. Therefore, AS is rooted in spleen-stomach disorder, manifests as plaques formed by pathological product accumulation in vessels, with lipid transport disorder as its core pathogenesis. Specifically speaking, the dysfunction of spleen in transportation with accumulation of dampness-turbidity marks the initial stage, and blood turbidity and coagulation and phlegm-nodules accumulating in vessels represent the intermediate phase. Cold accumulation and stagnated heat transforming into toxins represent the terminal stage. Zhuyuwan, first recorded in Taiping Holy Prescriptions for Universal Relief, contains equal proportions of Coptidis Rhizoma and Evodiae Fructus. Coptidis Rhizoma, bitter and cold, exerts descending and purging actions to assist stomach Qi in lowering turbidity. Evodiae Fructus, pungent-bitter and hot, disperses obstruction and promotes free flow to support spleen Qi in ascending the clear. The compatibility of Coptidis Rhizoma and Evodiae Fructus ascends the clear and descends the turbid to harmonize Yin and Yang, assisting the spleen in distributing essence and resolving lipid accumulation to reduce lipid levels. In terms of the therapeutic mechanism, Zhuyuwan modulates lipid metabolism by correcting immune-inflammation network imbalance, improving gut microbiota composition and metabolism, and enhancing reverse cholesterol transport. By analyzing the pathological characteristics of lipid transport disorder in AS, this study delves into the intrinsic connections between cardiovascular disease and lipid transport disorder, giving novel insights into the prevention and treatment of AS.
4.Differences in dynamic stability across different height barriers between obese and average men
Wenli ZHANG ; Ziqi ZHAO ; Leichao LIANG ; Yunqi TANG ; Yong WANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2319-2326
BACKGROUND:Obesity negatively affects dynamic balance during walking,and crossing barriers is a more routine functional activity that requires more stability in controlling body posture. OBJECTIVE:To investigate the differences in dynamic stability between obese and average males,and to assess the balance ability of obese males using a relatively more challenging obstacle crossing. METHODS:A total of 24 male youths(12 each in the obese and normal groups)were recruited to complete the tests of walking on level ground and crossing obstacles of different heights(4 cm,11 cm,15 cm)in random order.Kinematic and dynamic data were collected using the Qualisys motion capture system and Kistler force stage.Statistical analysis was performed using two-factor(2 groups * 4 movement types)repeated measures analysis of variance. RESULTS AND CONCLUSION:The obese group had a lower step speed than the normal group(P<0.05),the proportion of the first single support period decreased and the proportion of the second double support period increased when crossing the 11 cm versus 15 cm hurdles(P<0.05).When walking on level ground,the margin of stability in the internal and external directions in the normal group was greater than that of the obese group(P<0.05).When crossing the 4 cm hurdles,the margin of stability in the obese group was less than that in the normal group(P<0.05).When crossing the 11 cm hurdles,there was no significant difference between the two groups in the anterior-posterior direction(P>0.05),while there was a significant difference in the internal-external direction(P<0.05).When crossing the 15 cm hurdles,the margin of stability in the obese group was lower than that in the normal group(P<0.05).Overall,obesity decreases the body's ability to control the body,reduces dynamic stability during crossing the barrier,and increases the risk of falls compared with the general population.In addition,compared with level ground walking,the decrease in the dynamic stability when crossing barriers is more significant in the obese group than the general population.
5.Analysis of Animal Models of Autoimmune Thyroiditis Based on Clinical Characteristics of Traditional Chinese and Western Medicine
Sifeng JIA ; Zhuo ZHANG ; Yuyu DUAN ; Keqiu YAN ; Xinhe ZUO ; Yang LI ; Yong ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):235-243
ObjectiveAutoimmune thyroiditis (AIT) is a complex and immune-mediated disorder, with no established treatment protocol. Both Western and traditional Chinese medicine (TCM) focus on the pathogenesis and treatment of AIT. This study evaluated the clinical consistency of existing AIT animal models based on the diagnostic criteria of both Western and TCM, using a novel evaluation method. Additionally, it proposed recommendations and future prospects for improving these models. MethodsA comprehensive literature review was conducted on existing AIT animal models, using databases and the diagnostic criteria of both Western and TCM. Core and accompanying symptoms of these models were scored based on the diagnostic criteria of both Western and TCM, and clinical consistency was assessed. ResultsMice are the primary experimental animals used in AIT modeling. Modeling methods include vaccine immunization, iodine induction, heterologous thyroid antigen immunization, and a combination of high iodine water and antigen immunization. The average consistency of clinical syndromes based on TCM and Western medicine is 40%, 60%, 54%, and 63%, with the highest consistency observed in the combined high iodine water and antigen immunization model. Pathological models based on TCM are less common, with the liver-stagnation-spleen-deficiency rat model showing high clinical consistency. While most models are designed according to Western medical theory, meeting the surface and structural effectiveness criteria of Western medicine. However, there is a lack of fine-tuning and clear differentiation of TCM syndromes. ConclusionCurrent AIT syndrome-disease combination animal models primarily reflect the pathological features of Western medicine, with limited integration of TCM syndromes. Future research should aim to combine the syndrome characteristics of TCM with the pathological features of Western medicine, creating multi-factor and dynamic syndrome-disease models. Such models would better facilitate an experimental platform that conforms to the theories of TCM, providing more comprehensive support and guidance for the pathogenesis and treatment strategies of AIT.
6.Determination and analysis of twenty-four metallic elements in polysorbate 80
Yajuan LEI ; Yun JIANG ; Yong ZHAO ; Changliang LI ; Yanming LIU ; Yue ZHANG
Drug Standards of China 2024;25(5):521-525
Objective:To establish an inductively coupled plasma-mass spectrometry(ICP-MS)method for the determination of 24 elements in polysorbate 80,and evaluate the results.Methods:The elements were determined by ICP-MS,statistical analysis was conducted using SPSS 26,and the risk assessment was carried out with reference to ICH Q3D guidelines.Results:The standard curves showed good linear relationship in the corresponding concentration range(r=0.997-0.999).The recoveries were 88.81%-134.64%(RSD<5%,n=6).None of the elements recommended for evaluation exceeded the control threshold.Conclusion:The method is accurate,reliable and easy-to-operate,and the risk of elemental impurities in this sample is low.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.

Result Analysis
Print
Save
E-mail