1.Allogeneic lung transplantation in miniature pigs and postoperative monitoring
Yaobo ZHAO ; Ullah SALMAN ; Kaiyan BAO ; Hua KUI ; Taiyun WEI ; Hongfang ZHAO ; Xiaoting TAO ; Xinzhong NING ; Yong LIU ; Guimei ZHANG ; He XIAO ; Jiaoxiang WANG ; Chang YANG ; Feiyan ZHU ; Kaixiang XU ; Kun QIAO ; Hongjiang WEI
Organ Transplantation 2026;17(1):95-105
Objective To explore the feasibility and reference value of allogeneic lung transplantation and postoperative monitoring in miniature pigs for lung transplantation research. Methods Two miniature pigs (R1 and R2) underwent left lung allogeneic transplantation. Complement-dependent cytotoxicity tests and blood cross-matching were performed before surgery. The main operative times and partial pressure of arterial oxygen (PaO2) after opening the pulmonary artery were recorded during surgery. Postoperatively, routine blood tests, biochemical blood indicators and inflammatory factors were detected, and pathological examinations of multiple organs were conducted. Results The complement-dependent cytotoxicity test showed that the survival rate of lymphocytes between donors and recipients was 42.5%-47.3%, and no agglutination reaction occurred in the cross-matching. The first warm ischemia times of D1 and D2 were 17 min and 10 min, respectively, and the cold ischemia times were 246 min and 216 min, respectively. Ultimately, R1 and R2 survived for 1.5 h and 104 h, respectively. Postoperatively, in R1, albumin (ALB) and globulin (GLB) decreased, and alanine aminotransferase increased; in R2, ALB, GLB and aspartate aminotransferase all increased. Urea nitrogen and serum creatinine increased in both recipients. Pathological results showed that in R1, the transplanted lung had partial consolidation with inflammatory cell infiltration, and multiple organs were congested and damaged. In R2, the transplanted lung had severe necrosis with fibrosis, and multiple organs had mild to moderate damage. The expression levels of interleukin-1β and interleukin-6 increased in the transplanted lungs. Conclusions The allogeneic lung transplantation model in miniature pigs may systematically evaluate immunological compatibility, intraoperative function and postoperative organ damage. The data obtained may provide technical references for subsequent lung transplantation research.
2.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
3.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
4.Network toxicology and its application in studying exogenous chemical toxicity
Yanli LIN ; Zehua TAO ; Zhao XIAO ; Chenxu HU ; Bobo YANG ; Ya WANG ; Rongzhu LU
Journal of Environmental and Occupational Medicine 2025;42(2):238-244
With the continuous development of society, a large number of new chemicals are continuously emerging, which presents a challenge to current risk assessment and safety management of chemicals. Traditional toxicology research methods have certain limitations in quickly, efficiently, and accurately assessing the toxicity of many chemicals, and cannot meet the actual needs. In response to this challenge, computational toxicology that use mathematical and computer models to achieve the prediction of chemical toxicity has emerged. In the meantime, as researchers increasingly pay attention to understanding the interaction mechanisms between exogenous chemical substances and the body from the system level, and multiomics technologies develop rapidly such as genomics, transcriptomics, proteomics, and metabolomics, huge amounts of data have been generated, providing rich information resources for studying the interactions between chemical substances and biological molecules. System toxicology and network toxicology have also developed accordingly. Of these, network toxicology can integrate these multiomics data to construct biomolecular networks, and then quickly predict the key toxicological targets and pathways of chemicals at the molecular level. This paper outlined the concept and development of network toxicology, summarized the main methods and supporting tools of network toxicology research, expounded the application status of network toxicology in studying potential toxicity of exogenous chemicals such as agricultural chemicals, environmental pollutants, industrial chemicals, and foodborne chemicals, and analyzed the development prospects and limitations of network toxicology research. This paper aimed to provide a reference for the application of network toxicology in other fields.
5.Shentong Zhuyutang Regulates SIRT1/Nrf2 Pathway to Ameliorate Intervertebral Disc Degeneration in Rats
Jiajun HUANG ; Diyou WU ; Guangyi TAO ; Yu ZHAO ; Junqing HUANG ; Bin YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):29-39
ObjectiveTo study the effect and mechanism of Shentong Zhuyutang in treating intervertebral disc degeneration (IDD) in rats. MethodsIn the cell experiment, male rats were administrated with normal saline or low-, medium-, and high-dose (3.38, 6.75,13.5 g·kg-1, respectively) Shentong Zhuyutang by gavage, respectively, and serum samples were collected after 7 days of continuous administration. Another 10 male rats were selected for the isolation of nucleus pulposus cells. The cell model of IDD was established by treatment with interleukin (IL)-1β. The modeled cells were then treated with Shentong Zhuyutang-containing serum and the ferroptosis inhibitor ferrostatin-1 (Fer-1), respectively, to investigate the effects of Shentong Zhuyutang-containing serum on the proliferation and ferroptosis of nucleus pulposus cells. To study the role of silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) in the regulation of ferroptosis in nucleus pulposus cells by Shentong Zhuyutang-containing serum, this study treated the cells with the SIRT1 inhibitor Ex 527 and the Nrf2 inhibitor ML385, respectively, in addition to the treatment with IL-1β and high-dose Shentong Zhuyutang-containing serum. The cell-counting kit-8 (CCK-8) assay and EdU staining were employed to measure the cell viability and proliferation, respectively. The Fe2+, glutathione (GSH), and malondiadehyde (MDA) levels were measured by colorimetric assay. Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family 4 (ACSL4), Collagen Ⅱ, Aggrecan, SIRT1, and Nrf2. Immunofluorescence was used detect SIRT1 expression. In the animal experiment, male rats were treated with anulus puncture for the modeling of IDD. Rats were randomly assigned into sham operation, model, Shentong Zhuyutang-containing serum (13.5 g·kg-1), and positive control (nimesulide dispersible tablets, 0.18 mg·kg-1) groups. Rats in the drug intervention groups were administrated with corresponding agents at 1 mL·kg-1, and those in the sham operation and model groups were administrated with equal volumes of normal saline, once daily for 28 consecutive days. At the end of the last administration, the histopathological changes in the intervertebral discs of rats were observed by hematoxylin-eosin staining and scored by the Masuda method. Western blot was employed to determine the protein levels of SIRT1, Nrf2, GPX4, and Collagen Ⅱ in the nucleus pulposus tissue. ResultsCompared with the control group, the IL-1β group of nucleus pulposus cells showed elevated levels of Fe2+, MDA, and ACSL4 (P<0.05), decreased cell viability, lowered GSH level, and down-regulated protein levels of GPX4, Collagen Ⅱ, and Aggrecan (P<0.05). Shentong Zhuyutang-containing serum and Fer-1 reversed the effects of IL-1β on the viability and ferroptosis of nucleus pulposus cells and up-regulated the protein levels of Collagen Ⅱ and Aggrecan in nucleus pulposus cells (P<0.05). Compared with the control group, the IL-1β group showcased down-regulated expression of Sirt1 and Nrf2 in nucleus pulposus cells (P<0.05). Compared with the IL-1β group, the high-dose Shentong Zhuyutang-containing serum+IL-1β group showed up-regulated expression of SIRT1 and Nrf2 in nucleus pulposus cells (P<0.05). Compared with the high-dose Shentong Zhuyutang-containing serum+IL-1β group, the ML385 group showed down-regulated protein levels of Nrf2 and GPX4, lowered GSH level, and elevated Fe2+ and MDA levels (P<0.05). In addition, the Ex 527 group showed down-regulated protein levels of SIRT1, Nrf2, and GPX4 (P<0.05). The results of the animal experiment showed that compared with the sham operation group, the model group had severe degeneration of the intervertebral disc tissue with increased pathological score, up-regulated protein level of ACSL4 (P<0.05), and down-regulated protein levels of SIRT1, Nrf2, GPX4, and Collagen Ⅱ (P<0.05). Compared with the model group, the Shentong Zhuyutang group showed alleviated IDD with declined pathological score, down-regulated protein level of ACSL4 (P<0.05), and up-regulated protein levels of SIRT1, Nrf2, GPX4, and Collagen Ⅱ (P<0.05). ConclusionShentong Zhuyutang may activate the SIRT1/Nrf2 signaling pathway to inhibit the ferroptosis of nucleus pulposus cells, thereby delaying the process of IDD in rats.
6.Huayu Mingmu Prescription Downregulates PI3K/Akt/mTOR-HIF-1α/VEGFA Signaling Pathway to Intervene in Retinal Angiogenesis of DR Rats
Xiaoqiu MA ; Lei ZHAO ; Huimin ZHOU ; Fanghui ZHENG ; Guoqing YANG ; Tao ZUO ; Xiande MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):78-87
ObjectiveTo observe the effect of Huayu Mingmu prescription on retinal angiogenesis and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR)-hypoxia inducible factor-1α/vascular endothelial growth factor A (HIF-1α/VEGFA) signaling pathway in diabetic retinopathy (DR) rats. MethodsSixty-four SPF-grade male SD rats were used in the study. Eleven rats were randomly selected as the normal group, while the remaining 53 rats were fed a high-sugar, high-fat diet combined with low-dose streptozotocin (STZ) intraperitoneal injection to establish a type 2 diabetes mellitus (T2DM) rat model. DR model evaluation was performed after 12 weeks of diabetes. The rats were then divided into model, low-dose, medium-dose, and high-dose groups of Huayu Mingmu prescription (9.29, 18.57, 37.14 g·kg-1), and a calcium dobesilate group (0.16 g·kg-1), with 10 rats in each group. The rats were orally administered the corresponding doses of Huayu Mingmu prescription and calcium dobesilate. The normal and model groups received equal volumes of physiological saline via gavage for 8 consecutive weeks. Retinal vascular changes were observed through fundus photography, and pathological changes in retinal tissue were evaluated using hematoxylin-eosin (HE) staining. Retinal microvascular pathological changes were examined through retinal vascular network preparation and periodic acid-Schiff (PAS) staining. Immunofluorescence (IF) was used to detect the expression of VEGFA and angiopoietin-2 (Ang-2) in retinal tissue. Western blot was employed to detect the protein expression of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to assess the mRNA expression of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue. ResultsCompared with the normal group, the model group exhibited significant pathological changes in retinal tissue, including the appearance of acellular capillaries, as well as significant endothelial cell (E) proliferation and pericyte (P) loss (P<0.01). The E/P was significantly elevated (P<0.01). Protein and mRNA expression levels of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue were significantly increased (P<0.01), and the expression of Ang-2 protein was significantly elevated (P<0.01). In contrast, retinal tissue in the treatment groups showed alleviated pathological changes, with reduced endothelial cell proliferation and pericyte loss (P<0.05, P<0.01). Among the treatment groups, the high-dose Huayu Mingmu prescription and the calcium dobesilate group exhibited a decreased E/P (P<0.01). Protein and mRNA expression levels of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue were significantly reduced (P<0.05, P<0.01), and the expression of Ang-2 protein was significantly decreased (P<0.01). ConclusionHuayu Mingmu prescription can intervene in retinal neovascularization in DR rats, delay the progression of DR, and its mechanism may be related to antagonizing the PI3K/Akt/mTOR-HIF-1α/VEGFA signaling pathway.
7.Mechanism of Exogenous Melatonin in Inhibiting Early Bolting in Angelica sinensis
Jiang ZHAO ; Zhanwen TANG ; Tao YANG ; Jie SHA ; Tong PENG ; Weiwen LU ; Yinquan WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):234-240
ObjectiveThis study aims to investigate the effects of different sizes of seedlings and melatonin treatment on physiological and biochemical indicators and bolting-related gene expression in Angelica sinensis, find substances related to early bolting, and elucidate the inhibitory mechanism of melatonin on bolting. MethodsSpectrophotometry was used to detect the related enzyme activities of A. sinensis leaves. The contents of endogenous hormones and polyamines were detected using ultra-high performance liquid chromatography-tandem mass spectrometry. Real-time polymerase chain reaction (Real-time PCR) was used to detect the expression levels of bolting-related genes. Inter-group differential indicator analysis, orthogonal partial least squares discriminant analysis, and principal component analysis were comprehensively applied to identify factors related to early bolting. ResultsEndogenous jasmonic acid and melatonin were identified as the most important factors affecting early bolting. Secondly, the activity of antioxidant enzymes, abscisic acid content, gibberellin content, and the expression levels of CO3, HD3A, and FD genes had important effects on the bolting process. Compared with small seedlings, exogenous melatonin treatment mainly inhibited early bolting by increasing endogenous melatonin content, reducing gibberellin content, and decreasing the expression levels of SOC1 and FD genes. ConclusionExogenous melatonin can inhibit early bolting in A. sinensis by regulating its physiological, biochemical, and gene expression levels.
8.Mechanism of Exogenous Melatonin in Inhibiting Early Bolting in Angelica sinensis
Jiang ZHAO ; Zhanwen TANG ; Tao YANG ; Jie SHA ; Tong PENG ; Weiwen LU ; Yinquan WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):234-240
ObjectiveThis study aims to investigate the effects of different sizes of seedlings and melatonin treatment on physiological and biochemical indicators and bolting-related gene expression in Angelica sinensis, find substances related to early bolting, and elucidate the inhibitory mechanism of melatonin on bolting. MethodsSpectrophotometry was used to detect the related enzyme activities of A. sinensis leaves. The contents of endogenous hormones and polyamines were detected using ultra-high performance liquid chromatography-tandem mass spectrometry. Real-time polymerase chain reaction (Real-time PCR) was used to detect the expression levels of bolting-related genes. Inter-group differential indicator analysis, orthogonal partial least squares discriminant analysis, and principal component analysis were comprehensively applied to identify factors related to early bolting. ResultsEndogenous jasmonic acid and melatonin were identified as the most important factors affecting early bolting. Secondly, the activity of antioxidant enzymes, abscisic acid content, gibberellin content, and the expression levels of CO3, HD3A, and FD genes had important effects on the bolting process. Compared with small seedlings, exogenous melatonin treatment mainly inhibited early bolting by increasing endogenous melatonin content, reducing gibberellin content, and decreasing the expression levels of SOC1 and FD genes. ConclusionExogenous melatonin can inhibit early bolting in A. sinensis by regulating its physiological, biochemical, and gene expression levels.
9.Bacterial Diversity in Phyllosphere and Rhizosphere Soil of Angelica sinensis in Continuous Cropping and Effects of Different Disease Control Measures
Zhanwen TANG ; Tao YANG ; Tong PENG ; Yinquan WANG ; Jiang ZHAO ; Jie SHA ; Zhiye WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):199-207
ObjectiveTo investigate the bacterial diversity in the rhizosphere soil and phyllosphere of Angelica sinensis and examine the effects of foliar applications of a composite bacterial agent,salicylic acid,and coronatine on the bacterial diversity,disease incidence,and plant yield,thus providing a theoretical basis and guidance for the artificial construction of functional minimal communities and the regulation of rhizosphere through foliar treatments. MethodsUnder continuous cropping conditions in the field,foliar applications of a composite bacterial agent,salicylic acid,coronatine,and sterile water were conducted. The 100-plant weight was measured via the conventional method,and the incidence of diseases was recorded. The microbial community composition,diversity,and inter-group differences in the phyllosphere and rhizosphere soil of A. sinensis were analyzed by 16S high-throughput sequencing,and the potential microbial functions were predicted. ResultsCompared with the blank control,foliar applications of salicylic acid and coronatine both significantly reduced the yield and root rot incidence of A. sinensis. The foliar application of salicylic acid decreased the content of ferulic acid and increased that of ligustilide. The foliar application of coronatine increased the content of both ferulic acid and ligustilide. The microbial communities and functions in the phyllosphere and rhizosphere soil were significantly different. The phyllosphere had lower microbial diversity,with all bacteria being Gram-negative,mainly Cyanobacteria and Proteobacteria with limited functions. The rhizosphere soil had higher microbial diversity,harboring dominant phyla including Proteobacteria,Actinobacteria,Acidobacteria,and Bacteroidetes with rich functions. All foliar treatments regulated the microbial community in the rhizosphere soil,with a more significant effect on the microbial community in the rhizosphere soil than that in the phyllosphere. The coronatine treatment significantly reduced the abundance of Proteobacteria and nitrate-reducing and aromatic compound-degrading microorganisms in the rhizosphere soil,thus affecting nutrient cycling and autotoxic substance degradation and leading to a yield reduction. Compared with the salicylic acid treatment,the coronatine treatment significantly increased the abundance of Bacillus and Streptomyces in the rhizosphere soil,demonstrating enhanced disease control efficacy. ConclusionFoliar application of coronatine and salicylic acid can significantly regulate the composition and function of bacterial communities in the rhizosphere soil,thereby reducing the disease incidence and the plant yield.
10.Renshentang Alleviates Atherosclerosis in Mice by Targeting TRPV1 to Regulate Foam Cell Cholesterol Metabolism
Yulu YUAN ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Zhanzhan HE ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):11-19
ObjectiveTo explore the effects of Renshentang on atherosclerosis (AS) in mice based on the role of transient receptor potential vanilloid1 (TRPV1) in regulating cholesterol metabolism in foam cells. MethodsNine SPF-grade 8-week-old C57BL/6J mice were set as a normal group, and 60 ApoE-/- mice were randomized into model, positive drug (simvastatin, 0.02 g·kg-1·d-1), and low-, medium-, and high-dose (1.77, 3.54, 7.08 g·kg-1·d-1, respectively) Renshentang groups (n=12) according to body weight. The normal group was fed with a normal diet, and the other groups were fed with a high-fat diet and given corresponding drugs by oral gavage for the modeling of AS. The mice were administrated with corresponding drugs once a day for 12 weeks. After the last administration and fasting for 12 h, the aorta was collected. Plaque conditions, pathological changes, levels of total cholesterol (TC), triglcerides (TG), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C), and the expression of TRPV1, liver X receptor (LXR), inducible degrader of the low-density lipoprotein receptor (IDOL), and low-density lipoprotein receptor (LDLR) in the aortic tissue were observed and detected by gross oil red O staining, HE staining, Western blot, immunohistochemistry, and real-time PCR. ResultsCompared with the normal group, the model group presented obvious plaque deposition in the aorta, raised levels of TC, TG, and LDL-C in the serum (P<0.01), up-regulated expression level of LDLR in the aorta (P<0.01), lowered level of HDL-C in the serum, and down-regulated expression levels of TRPV1, LXR, and IDOL in the aorta (P<0.05, P<0.01). Compared with the model group, the positive drug and Renshentang at different doses alleviated AS, elevated the levels of HDL-C, TRPV1, LXR, and IDOL (P<0.05, P<0.01), while lowering the levels of TC, TG, LDL-C, and LDLR (P<0.05, P<0.01). ConclusionRenshentang has a lipid-lowering effect on AS mice. It can effectively reduce lipid deposition, lipid levels, and plaque area of AS mice by activating TRPV1 expression and regulating the LXR/IDOL/LDLR pathway.

Result Analysis
Print
Save
E-mail