1.Joint Relation Extraction of Famous Medical Cases with CasRel Model Combining Entity Mapping and Data Augmentation
Yuxin LI ; Xinghua XIANG ; Hang YANG ; Dasheng LIU ; Jiaheng WANG ; Zhiwei ZHAO ; Jiaxu HAN ; Mengjie WU ; Qianzi CHE ; Wei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):218-225
ObjectiveTo address the challenges of unstructured classical Chinese expressions, nested entity relationships, and limited annotated data in famous traditional Chinese medicine(TCM) case records, this study proposes a joint relation extraction framework that integrates data augmentation and entity mapping, aiming to support the construction of TCM diagnostic knowledge graphs and clinical pattern mining. MethodsWe developed an annotation structure for entities and their relationships in TCM case texts and applied a data augmentation strategy by incorporating multiple ancient texts to expand the relation extraction dataset. A cascade binary tagging framework for relation triple extraction(CasRel) model for TCM semantics was designed, integrating a pre-trained bidirectional encoder representations from transformers(BERT) layer for classical TCM texts to enhance semantic representation, and using a head entity-relation-tail entity mapping mechanism to address entity nesting and relation overlapping issues. ResultsExperimental results showed that the CasRel model, combining data augmentation and entity mapping, outperformed the pipeline-based Bert-Radical-Lexicon(BRL)-bidirectional long short-term memory(BiLSTM)-Attention model. The overall precision, recall, and F1-score across 12 relation types reached 65.73%, 64.03%, and 64.87%, which represent improvements of 14.26%, 7.98%, and 11.21% compared to the BRL-BiLSTM-Attention model, respectively. Notably, the F1-score for tongue syndrome relations increased by 22.68%(69.32%), and the prescription-syndrome relations performed the best with the F1-score of 70.10%. ConclusionThe proposed framework significantly improves the semantic representation and complex dependencies in TCM texts, offering a reusable technical framework for structured mining of TCM case records. The constructed knowledge graph can support clinical syndrome differentiation, prescription optimization, and drug compatibility, providing a methodological reference for TCM artificial intelligence research.
2.Study on the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep
Ming QIAO ; Yao ZHAO ; Yi ZHU ; Yexia CAO ; Limei WEN ; Yuehong GONG ; Xiang LI ; Juanchen WANG ; Tao WANG ; Jianhua YANG ; Junping HU
China Pharmacy 2026;37(1):24-29
OBJECTIVE To investigate the effects and mechanisms of Lycium ruthenicum Murr. in improving sleep. METHODS Network pharmacology was employed to identify the active components of L. ruthenicum and their associated disease targets, followed by enrichment analysis. A caffeine‑induced zebrafish model of sleep deprivation was established , and the zebrafish were treated with L. ruthenicum Murr. extract (LRME) at concentrations of 0.1, 0.2 and 0.4 mg/mL, respectively; 24 h later, behavioral changes of zebrafish and pathological alterations in brain neurons were subsequently observed. The levels of inflammatory factors [interleukin-6 (IL-6), IL-1β, IL-10, tumor necrosis factor-α (TNF-α)], oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT)], and neurotransmitters [5- hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), glutamic acid (Glu), dopamine (DA), and norepinephrine (NE)] were measured. The protein expression levels of protein kinase B1 (AKT1), phosphorylated AKT1 (p-AKT1), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (Bcl-2), sarcoma proto-oncogene,non-receptor tyrosine kinase (SRC), and heat shock protein 90α family class A member 1 (HSP90AA1) in the zebrafish were also determined. RESULTS A total of 12 active components and 176 intersecting disease targets were identified through network pharmacology analysis. Among these, apigenin, naringenin and others were recognized as core active compounds, while AKT1, EGFR and others served as key targets; EGFR tyrosine kinase inhibitor resistance signaling pathway was identified as the critical pathway. The sleep improvement rates in zebrafish of LRME low-, medium-, and high-dose groups were 54.60%, 69.03% and 77.97%, 开发。E-mail:hjp_yft@163.com respectively, while the inhibition ratios of locomotor distance were 0.57, 0.83 and 0.95, respectively. Compared with the model group, the number of resting counts, resting time and resting distance were significantly increased/extended in LRME medium- and high-dose groups (P<0.05). Neuronal damage in the brain was alleviated. Additionally, the levels of IL-6, IL-1β, TNF-α, MDA, Glu, DA and NE, as well as the protein expression levels of AKT1, p-AKT1, EGFR, SRC and HSP90AA1, were markedly reduced (P<0.05), while the levels of IL-10, SOD, GSH-Px, CAT, 5-HT and GABA, as well as Bcl-2 protein expression, were significantly elevated (P<0.05). CONCLUSIONS L. ruthenicum Murr. demonstrates sleep-improving effects, and its specific mechanism may be related to the regulation of inflammatory responses, oxidative stress, neurotransmitter balance, and the EGFR tyrosine kinase inhibitor resistance signaling pathway.
3.Mechanism of Pizhan Powder in regulating the Wnt4/β-catenin signaling pathway to promote wound healing in mice with chronic skin ulcers
Pingxinyi QUE ; Xiang XIAO ; Li ZENG ; Xianbin ZHAO ; Min XIAO ; Songqi TANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):205-215
Objective:
We aimed to explore the mechanism of Pizhan Powder in regulating the Wnt4/β-catenin signaling pathway to promote wound healing in mice with chronic skin ulcer.
Methods:
Male BALB/c mice were divided into blank, model, Pizhan Powder, Pizhan powder removed bark medications, bark medications, inhibitor, and Pizhan Powder + inhibitor groups using the random number table method, with six mice per group. Except for the blank group, chronic skin ulcer wound models were prepared in the other groups by implanting foreign bodies. The blank control group received no treatment, whereas the wounds of the model group were cleaned with furacilin solution. The Pizhan Powder, Pizhan Powder removed bark medications, and bark medications groups were each administered 0.1 g of the corresponding medication on the skin wounds. The inhibitor group received an intraperitoneal injection of 3-(4-methylphenylsulfonamido) benzoic acid methyl ester (MSAB) at a dosage of 10 mg/kg. The Pizhan Powder + inhibitor group was administered 0.1 g of Pizhan Powder on the skin wound, and an intraperitoneal injection of MSAB was also administered (10 mg/kg). These treatments were administered once a day for 14 consecutive days. Wound healing was observed on the first, third, seventh, and 14th day of treatment; hematoxylin and eosin staining was used to observe the pathological changes of ulcerated skin; keratin 10 (CK10), keratin 14 (CK14), cell proliferation nuclear antigen (Ki-67), α-smooth muscle actin (α-SMA), and β-catenin expression in wounds was observed through immunofluorescence; Western blotting was used to detect the expression of signaling pathway-related proteins (Wnt4 and β-catenin).
Results:
Compared to the model group, the Pizhan Powder group showed a reduced wound area and an increased wound healing rate (P<0.05) and elevated CK10, CK14, Ki-67, α-SMA, β-catenin, and Wnt4 protein expressions (P<0.05). Compared to the Pizhan Powder group, the wound healing rate of the bark medications and Pizhan Powder removed bark medications groups was reduced (P<0.05). The wound healing rate and the fluorescence expression of CK10, CK14, Ki-67, and α-SMA in the Pizhan Powder removed bark medications group were lower than that in the bark medications group (P<0.05). Compared to the Pizhan Powder group, the wound healing rate of the Pizhan Powder + inhibitor group was reduced, and CK10, CK14, Ki-67, α-SMA, β-catenin and Wnt4 protein expression were lower (P<0.05).
Conclusion
Pizhan Powder promotes wound healing in chronic skin ulcers of mice by regulating the Wnt4/β-catenin signaling pathway. The bark medications (buffalo hide, white mulberry root-bark, and Chinese wolfberry root-bark) play a crucial role, representing a concrete application of the traditional Chinese medicine theory of " treating skin with skin.
4.Pediatric penile incarceration by metal screw nut:a case report and literature review
Zhanyu XU ; Xiang ZHAO ; Ning LI
Journal of Modern Urology 2025;30(4):327-332
Objective: To explore methods about how to treat penile foreign body incarceration,so as to provide reference for clinical treatment of such cases. Methods: The diagnosis and treatment of a patient with penile metal foreign body incarceration from the Department of Pediatric Surgery of Tongji Hospital was analyzed,relevant Chinese and English literature were retrieved,and treatment methods and outcomes were summarized. Results: A 11-year-old boy came to our hospital with a screw nut incarcerated around the penis for over 10 days,the distal penis dark red swelling,local epidermis exfoliation oozing.A wire saw was used to cut and remove the incarcerated object.The patient recovered well,with no secondary damage to the penis,and no dysfunctions like dysuria.The search of the Chinese and English databases obtained a total of 79 penile incarceration-related papers involving 184 cases.Treatment methods included direct removal after bloodletting for detumescence,removal after cutting with various instruments,and penis skin degloving. Conclusion: Since penile incarceration is a rare emergency,early treatment can avoid complications with good prognosis.Methods dealing with penile foreign body incarceration have both pros and cons.Therefore,selection of the appropriate methods needs comprehensive evaluation,or follows the order of simple-to-complex operations.
5.Prediction of Pulmonary Nodule Progression Based on Multi-modal Data Fusion of CCNet-DGNN Model
Lehua YU ; Yehui PENG ; Wei YANG ; Xinghua XIANG ; Rui LIU ; Xiongjun ZHAO ; Maolan AYIDANA ; Yue LI ; Wenyuan XU ; Min JIN ; Shaoliang PENG ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):135-143
ObjectiveThis study aims to develop and validate a novel multimodal predictive model, termed criss-cross network(CCNet)-directed graph neural network(DGNN)(CGN), for accurate assessment of pulmonary nodule progression in high-risk individuals for lung cancer, by integrating longitudinal chest computed tomography(CT) imaging with both traditional Chinese and western clinical evaluation data. MethodsA cohort of 4 432 patients with pulmonary nodules was retrospectively analyzed. A twin CCNet was employed to extract spatiotemporal representations from paired sequential CT scans. Structured clinical assessment and imaging-derived features were encoded via a multilayer perceptron, and a similarity-based alignment strategy was adopted to harmonize multimodal imaging features across temporal dimensions. Subsequently, a DGNN was constructed to integrate heterogeneous features, where nodes represented modality-specific embeddings and edges denoted inter-modal information flow. Finally, model optimization was performed using a joint loss function combining cross-entropy and cosine similarity loss, facilitating robust classification of nodule progression status. ResultsThe proposed CGN model demonstrated superior predictive performance on the held-out test set, achieving an area under the receiver operating characteristic curve(AUC) of 0.830, accuracy of 0.843, sensitivity of 0.657, specificity of 0.712, Cohen's Kappa of 0.417, and F1 score of 0.544. Compared with unimodal baselines, the CGN model yielded a 36%-48% relative improvement in AUC. Ablation studies revealed a 2%-22% increase in AUC when compared to simplified architectures lacking key components, substantiating the efficacy of the proposed multimodal fusion strategy and modular design. Incorporation of traditional Chinese medicine (TCM)-specific symptomatology led to an additional 5% improvement in AUC, underscoring the complementary value of integrating TCM and western clinical data. Through gradient-weighted activation mapping visualization analysis, it was found that the model's attention predominantly focused on nodule regions and effectively captured dynamic associations between clinical data and imaging-derived features. ConclusionThe CGN model, by synergistically combining cross-attention encoding with directed graph-based feature integration, enables effective alignment and fusion of heterogeneous multimodal data. The incorporation of both TCM and western clinical information facilitates complementary feature enrichment, thereby enhancing predictive accuracy for pulmonary nodule progression. This approach holds significant potential for supporting intelligent risk stratification and personalized surveillance strategies in lung cancer prevention.
6.Efficacy of balloon stent or oral estrogen for adhesion prevention in septate uterus: A randomized clinical trial.
Shan DENG ; Zichen ZHAO ; Limin FENG ; Xiaowu HUANG ; Sumin WANG ; Xiang XUE ; Lei YAN ; Baorong MA ; Lijuan HAO ; Xueying LI ; Lihua YANG ; Mingyu SI ; Heping ZHANG ; Zi-Jiang CHEN ; Lan ZHU
Chinese Medical Journal 2025;138(8):985-987
7.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
8.Carbon footprint accounting of traditional Chinese medicine extracts based on life cycle assessment: a case study of mulberry leaf extract from an enterprise.
Zhi-Min CI ; Jian-Xiang OU ; Qiang YU ; Chuan ZHENG ; Zhao-Qing PEI ; Li-Ping QU ; Ming YANG ; Li HAN ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2025;50(1):120-129
Under the background of carbon peaking and carbon neutrality goals, the Ministry of Ecology and Environment, together with 15 national ministries and commissions, has formulated the Implementation Plan on Establishing a Carbon Footprint Management System, and it is urgent for traditional Chinese medicine(TCM) pharmaceutical enterprises to carry out research on carbon footprint accounting methods of related products. Based on the life cycle assessment(LCA) theory, taking mulberry leaf extract produced by a certain enterprise as an example, this study analyzed the carbon footprint of TCM extracts during the life cycle. The results show that for every 1 kg of product produced, the carbon emissions from the stages of raw material acquisition, transportation, and extract production are-20.569, 1.205, and 173.577 kgCO_2eq(CO_2 equivalent), respectively. The carbon footprint of the product is 154.213 kgCO_2eq·kg~(-1). In addition, the carbon emission is the highest in the production stage, in which the consumption of ethanol solvents makes the greatest contribution to the carbon footprint, accounting for 25.71%, more than one-fourth of the total carbon footprint. The second contribution was from the treatment process of TCM residues, accounting for 19.67%, closely followed by wastewater treatment(17.71%), the consumption of hot steam(17.43%), and drinking water(16.90%). The consumption of electric power and packaging materials has a smaller carbon emission of 2.58%. In particular, the carbon emission caused by the consumption of packaging materials is only 0.04%, which is negligible. The results of the study are expected to provide a reference for TCM enterprises to carry out research on the carbon footprint of products, offer ideas for collaborative innovation in reducing pollution and carbon emissions throughout the entire industry chain of TCM, and develop new quality productivity of modern TCM industry based on green and low-carbon manufacturing.
Morus/chemistry*
;
Plant Leaves/chemistry*
;
Carbon Footprint
;
Drugs, Chinese Herbal/chemistry*
;
Plant Extracts/analysis*
;
Medicine, Chinese Traditional
9.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
10.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*


Result Analysis
Print
Save
E-mail