1.The Neurobiological Mechanisms of Runner’s High
Yun-Teng WANG ; Jia-Qi LIANG ; Wan-Tang SU ; Li ZHAO ; Yan LI
Progress in Biochemistry and Biophysics 2025;52(2):358-373
“Runner’s high” refers to a momentary sense of pleasure that suddenly appears during running or other exercise activities, characterized by anti-anxiety, pain relief, and other symptoms. The neurobiological mechanism of “runner’s high” is unclear. This review summarizes human and animal models for studying “runner’s high”, analyzes the neurotransmitters and neural circuits involved in runner’s high, and elucidates the evidence and shortcomings of researches related to “runner’s high”. This review also provides prospects for future research. Research has found that exercise lasting more than 30 min and with an intensity exceeding 70% of the maximum heart rate can reach a “runner’s high”. Human experiments on “runner’s high” mostly use treadmill exercise intervention, and evaluate it through questionnaire surveys, measurement of plasma AEA, miRNA and other indicators. Animal experiments often use voluntary wheel running intervention, and evaluate it through behavioral experiments such as conditional place preference, light dark box experiments (anxiety), hot plate experiments (pain sensitivity), and measurement of plasma AEA and other indicators. Dopamine, endogenous opioid peptides, endogenous cannabinoids, brain-derived neurotrophic factor, and other substances increase after exercise, which may be related to the “runner’s high”. However, attention should be paid to the functional differences of these substances in the central and peripheral regions, as well as in different brain regions. Moreover, current studies have not identified the targets of the neurotransmitters or neural factors mentioned above, and further in-depth researches are needed. The mesolimbic dopamine system, prefrontal cortex-nucleus accumbens projection, ventral hippocampus-nucleus accumbens projection, red nucleus-ventral tegmental area projection, cerebellar-ventral tegmental area projection, and brain-gut axis may be involved in the regulation of runner’s high, but there is a lack of direct evidence to prove their involvement. There are still many issues that need to be addressed in the research on the neurobiological mechanisms of “runner’s high”. (1) Most studies on “runner’s high” involve one-time exercise, and the characteristics of changes in “runner’s high” during long-term exercise still need to be explored. (2) The using of scales to evaluate subjects lead to the lacking of objective indicators. However, some potential biomarkers (such as endocannabinoids) have inconsistent characteristics of changes after one-time and long-term exercise. (3) The neurotransmitters involved in the formation of the “runner’s high” all increase in the peripheral and/or central nervous system after exercise. Attention should be paid to whether peripheral substances can enter the blood-brain barrier and the binding effects of neurotransmitters to different receptors are completely different in different brain regions. (4) Most of the current evidence show that some brain regions are activated after exercise. Is there a functional circuit mediating “runner’s high” between these brain regions? (5) Although training at a specific exercise intensity can lead to “runner’s high”, most runners have not experienced “runner’s high”. Can more scientific training methods or technological means be used to make it easier for people to experience the “runner’s high” and thus be more willing to engage in exercise? (6) The “runner’s high” and “addiction” behaviors are extremely similar, and there are evidences that exercise can reverse addictive behaviors. However, why is there still a considerable number of people in the sports population and even athletes who smoke or use addictive drugs instead of pursuing the “pleasure” brought by exercise? Solving the problems above is of great significance for enhancing the desire of exercise, improving the clinical application of neurological and psychiatric diseases through exercise, and enhancing the overall physical fitness of the population.
2.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
3.Antidepressant mechanism of Baihe Dihuang Decoction based on metabolomics and network pharmacology.
Chao HU ; Hui YANG ; Hong-Qing ZHAO ; Si-Qi HUANG ; Hong-Yu LIU ; Shui-Han ZHANG ; Lin TANG
China Journal of Chinese Materia Medica 2025;50(1):10-20
The Baihe Dihuang Decoction(BDD) is a representative traditional Chinese medicine formula that has been used to treat depression. This study employed metabolomics and network pharmacology to investigate the mechanism of BDD in the treatment of depression. Fifty male Sprague-Dawley(SD) rats were randomly assigned to the normal control group, model group, fluoxetine group, and high-and low-dose BDD groups. A rat model of depression was established through chronic unpredictable mild stress(CUMS), and the behavioral changes were detected by forced swimming test and open field test. Metabolomics technology was used to analyze the metabolic profiles of serum and hippocampal tissue to screen differential metabolites and related metabolic pathways. Additionally, network pharmacology and molecular docking techniques were used to investigate the key targets and core active ingredients of BDD in improving metabolic abnormalities of depression. A "component-target-metabolite-pathway" regulatory network was constructed. BDD could significantly improve depressive-like behavior in CUMS rats and regulate 12 differential metabolites in serum and 27 differential metabolites in the hippocampus, involving tryptophan metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, alanine, aspartate, and glutamate metabolism, tyrosine metabolism, and purine metabolism. Verbascoside, isorbascoside, and regaloside B were the key active ingredients for improving metabolic abnormalities in depression. Epidermal growth factor receptor(EGFR), protooncogene tyrosine-protein kinase(SRC), glycogen synthase kinase 3β(GSK3β), and androgen receptor(AR) were the key core targets for improving metabolic abnormalities of depression. This study offered a preliminary insight into the mechanism of BDD in alleviating metabolic abnormalities of depression through network regulation, providing valuable guidance for its clinical use and subsequent research.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Depression/genetics*
;
Antidepressive Agents/chemistry*
;
Network Pharmacology
;
Hippocampus/drug effects*
;
Humans
;
Molecular Docking Simulation
;
Behavior, Animal/drug effects*
;
Disease Models, Animal
4.Dual activation of GCGR/GLP1R signaling ameliorates intestinal fibrosis via metabolic regulation of histone H3K9 lactylation in epithelial cells.
Han LIU ; Yujie HONG ; Hui CHEN ; Xianggui WANG ; Jiale DONG ; Xiaoqian LI ; Zihan SHI ; Qian ZHAO ; Longyuan ZHOU ; JiaXin WANG ; Qiuling ZENG ; Qinglin TANG ; Qi LIU ; Florian RIEDER ; Baili CHEN ; Minhu CHEN ; Rui WANG ; Yao ZHANG ; Ren MAO ; Xianxing JIANG
Acta Pharmaceutica Sinica B 2025;15(1):278-295
Intestinal fibrosis is a significant clinical challenge in inflammatory bowel diseases, but no effective anti-fibrotic therapy is currently available. Glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP1R) are both peptide hormone receptors involved in energy metabolism of epithelial cells. However, their role in intestinal fibrosis and the underlying mechanisms remain largely unexplored. Herein GCGR and GLP1R were found to be reduced in the stenotic ileum of patients with Crohn's disease as well as in the fibrotic colon of mice with chronic colitis. The downregulation of GCGR and GLP1R led to the accumulation of the metabolic byproduct lactate, resulting in histone H3K9 lactylation and exacerbated intestinal fibrosis through epithelial-to-mesenchymal transition (EMT). Dual activating GCGR and GLP1R by peptide 1907B reduced the H3K9 lactylation in epithelial cells and ameliorated intestinal fibrosis in vivo. We uncovered the role of GCGR/GLP1R in regulating EMT involved in intestinal fibrosis via histone lactylation. Simultaneously activating GCGR/GLP1R with the novel dual agonist peptide 1907B holds promise as a treatment strategy for alleviating intestinal fibrosis.
5.Discovery and proof-of-concept study of a novel highly selective sigma-1 receptor agonist for antipsychotic drug development.
Wanyu TANG ; Zhixue MA ; Bang LI ; Zhexiang YU ; Xiaobao ZHAO ; Huicui YANG ; Jian HU ; Sheng TIAN ; Linghan GU ; Jiaojiao CHEN ; Xing ZOU ; Qi WANG ; Fan CHEN ; Guangying LI ; Chaonan ZHENG ; Shuliu GAO ; Wenjing LIU ; Yue LI ; Wenhua ZHENG ; Mingmei WANG ; Na YE ; Xuechu ZHEN
Acta Pharmaceutica Sinica B 2025;15(10):5346-5365
Sigma-1 receptor (σ 1R) has become a focus point of drug discovery for central nervous system (CNS) diseases. A series of novel 1-phenylethan-1-one O-(2-aminoethyl) oxime derivatives were synthesized. In vitro biological evaluation led to the identification of 1a, 14a, 15d and 16d as the most high-affinity (K i < 4 nmol/L) and selective σ 1R agonists. Among these, 15d, the most metabolically stable derivative exhibited high selectivity for σ 1R in relation to σ 2R and 52 other human targets. In addition to low CYP450 inhibition and induction, 15d also exhibited high brain permeability and excellent oral bioavailability. Importantly, 15d demonstrated effective antipsychotic potency, particularly for alleviating negative symptoms and improving cognitive impairment in experimental animal models, both of which are major challenges for schizophrenia treatment. Moreover, 15d produced no significant extrapyramidal symptoms, exhibiting superior pharmacological profiles in relation to current antipsychotic drugs. Mechanistically, 15d inhibited GSK3β and enhanced prefrontal BDNF expression and excitatory synaptic transmission in pyramidal neurons. Collectively, these in vivo proof-of-concept findings provide substantial experimental evidence to demonstrate that modulating σ 1R represents a potential new therapeutic approach for schizophrenia. The novel chemical entity along with its favorable drug-like and pharmacological profile of 15d renders it a promising candidate for treating schizophrenia.
6.Asiaticoside alleviates myocardial ischemia-reperfusion injury in rats by inhibiting NLRP3 inflammasome-mediated pyroptosis.
Fenlan BIAN ; Shiyao NI ; Peng ZHAO ; Maonanxing QI ; Bi TANG ; Hongju WANG ; Pinfang KANG ; Jinjun LIU
Journal of Southern Medical University 2025;45(5):977-985
OBJECTIVES:
To study the mechanism mediating the protective effect of asiaticoside (AS) against myocardial ischemia-reperfusion injury (MIRI) in rats.
METHODS:
Fifty SD rats were randomized into sham-operated group, MIRI model group and AS treatment group. AS treatment was administered at low, moderate and high doses by daily gavage for 2 weeks before MIRI modeling (n=10). Serum levels of lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), interleukin-18 (IL-18) and IL-1β, the volume of myocardial infarction and ischemia, and myocardial pathologies of the rats were determined or observed. The protein expression levels of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18 in the myocardial tissues were detected using Western blotting. The changes in the expression levels of these proteins were also detected in H9C2 cells with AS pretreatment prior to hypoxia-reoxygenation (H/R) injury.
RESULTS:
The rats models of MIRI exhibited significant myocardial infarction and ischemia with increased serum levels of LDH and CK-MB and myocardial expressions of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18. AS pretreatment effectively reduced myocardial infarction volume in the rat models and significantly reduced serum LDH and CK-MB levels and the protein levels in the myocardial tissue in a dose-dependent manner. In the H9C2 cell model of H/R injury, AS pretreatment significantly suppressed the elevation of the protein expressions of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18. Molecular docking studies showed that AS had a strong binding affinity with NLRP3.
CONCLUSIONS
Asiaticoside can alleviate MIRI in rats possibly by inhibiting NLRP3 inflammasome-mediated pyroptosis.
Animals
;
Myocardial Reperfusion Injury/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Inflammasomes/metabolism*
;
Triterpenes/pharmacology*
;
Interleukin-18/metabolism*
;
Male
;
Interleukin-1beta/metabolism*
;
Caspase 1/metabolism*
7.Efficacy and safety of acupuncture therapies for adult patients with mild and moderate major depressive disorder: A systematic review and meta-analysis.
Hong-Jun KUANG ; Hui-Sheng YANG ; Yi-Xuan FENG ; Han TANG ; Qi FAN ; Yu-Qin XU ; Shuo CUI ; Richard MUSIL ; Hedi LUXENBURGER ; Yi-Xuan ZHANG ; Hong ZHAO ; Yu-Qing ZHANG
Journal of Integrative Medicine 2025;23(5):471-491
BACKGROUND:
Acupuncture therapy provides a complementary and alternative approach to treating major depressive disorder (MDD), but its efficacy and safety have still not been comprehensively assessed. Recently published systematic reviews remain confusing and inconclusive.
OBJECTIVE:
This systematic review evaluated the efficacy and safety of acupuncture therapy alone or combined with antidepressants for adult patients with mild and moderate MDD.
SEARCH STRATEGY:
Chinese Biomedical Literature Database, China National Knowledge Infrastructure Database, Wanfang Database, Chinese Science and Technology Journal Database, PubMed, Embase, and Cochrane Library were searched from their inceptions to March 2025.
INCLUSION CRITERIA:
Randomized controlled trials that compared acupuncture therapy with antidepressants, or acupuncture therapy plus antidepressants with acupuncture therapy or antidepressants for adult patients with mild and moderate MDD were included.
DATA EXTRACTION AND ANALYSIS:
Five reviewers independently extracted data from original literature using a standardized form, and the data were verified by two reviewers to ensure accuracy. Statistical meta-analyses, publication bias analyses, and subgroup analyses were performed by using Review Manager 5.3 software. The Grading of Recommendations Assessment, Development, and Evaluation approach was used to assess the certainty of the evidence.
RESULTS:
A total of 60 eligible studies including 4675 participants were included. Low-certainty evidence showed that compared with antidepressants, acupuncture therapy (standardized mean difference [SMD] = -0.57; 95% confidence interval [CI] = [-0.87, -0.27]; I2 = 86%; P = 0.006) or acupuncture therapy plus antidepressants (SMD = -1.00; 95% CI = [-1.18, -0.81]; I2 = 77%; P < 0.00001) may reduce the severity of depression at the end of treatment. Low-certainty evidence indicated that compared with acupuncture therapy alone, acupuncture therapy plus antidepressants slightly reduced the severity of depression at the end of treatment (SMD = -0.38; 95% CI = [-0.61, -0.14]; I2 = 18%; P = 0.002). Similar results were also found for acupuncture's relief of insomnia. The reported adverse effects of acupuncture therapy were mild and transient. For most of the subgroup analyses, acupuncture type, scale type, and the course of treatment did not show a significant relative effect.
CONCLUSION
Acupuncture therapy may provide antidepressant effects and relieve insomnia with mild adverse effects for adult patients with mild and moderate MDD. But the certainty of evidence was very low. More high-quality, well designed, large-scale studies with long-term follow-up are needed in the future. Please cite this article as: Kuang HJ, Yang HS, Feng YX, Tang H, Fan Q, Xu YQ, Cui S, Musil R, Luxenburger H, Zhang YX, Zhao H, Zhang YQ. Efficacy and safety of acupuncture therapies for adult patients with mild and moderate major depressive disorder: A systematic review and meta-analysis. J Integr Med. 2025; 23(5):471-491.
Humans
;
Acupuncture Therapy/methods*
;
Depressive Disorder, Major/therapy*
;
Adult
;
Antidepressive Agents/therapeutic use*
;
Treatment Outcome
;
Randomized Controlled Trials as Topic
8.Discrimination of polysorbate 20 by high-performance liquid chromatography-charged aerosol detection and characterization for components by expanding compound database and library
Wang SHI-QI ; Zhao XUN ; Zhang LI-JUN ; Zhao YUE-MEI ; Chen LEI ; Zhang JIN-LIN ; Wang BAO-CHENG ; Tang SHENG ; Yuan TOM ; Yuan YAOZUO ; Zhang MEI ; Lee Kee HIAN ; Shi HAI-WEI
Journal of Pharmaceutical Analysis 2024;14(5):722-732
Analyzing polysorbate 20(PS20)composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance.The similar structures and polarities of PS20 components make accurate separation,identification,and quantification challenging.In this work,a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography(HPLC)with charged aerosol detection(CAD)to separate 18 key components with multiple esters.The separated components were characterized by ultra-high-performance liquid chro-matography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS)with an identical gradient as the HPLC-CAD analysis.The polysorbate compound database and library were expanded over 7-time compared to the commercial database.The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship.UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources.The method observed the impact of 4 degradation conditions on peak components,identifying stable components and their tendencies to change.HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences,distinguishing quasi products.
9.Leukocyte cell-derived chemotaxin 2(LECT2)regulates liver ischemia-reperfusion injury
Dong MENG-QI ; Xie YUAN ; Tang ZHI-LIANG ; Zhao XUE-WEN ; Lin FU-ZHEN ; Zhang GUANG-YU ; Huang ZHI-HAO ; Liu ZHI-MIN ; Lin YUAN ; Liu FENG-YONG ; Zhou WEI-JIE
Liver Research 2024;8(3):165-171
Background and aim:Hepatic ischemia-reperfusion injury(IRI)is a significant challenge in liver trans-plantation,trauma,hypovolemic shock,and hepatectomy,with limited effective interventions available.This study aimed to investigate the role of leukocyte cell-derived chemotaxin 2(LECT2)in hepatic IRI and assess the therapeutic potential of Lect2-short hairpin RNA(shRNA)delivered through adeno-associated virus(AAV)vectors. Materials and methods:This study analyzed human liver and serum samples from five patients under-going the Pringle maneuver.Lect2-knockout and C57BL/6J mice were used.Hepatic IRI was induced by clamping the hepatic pedicle.Treatments included recombinant human LECT2(rLECT2)and AAV-Lect2-shRNA.LECT2 expression levels and serum biomarkers including alanine aminotransferase(ALT),aspartate aminotransferase(AST),creatinine,and blood urea nitrogen(BUN)were measured.Histological analysis of liver necrosis and quantitative reverse-transcription polymerase chain reaction were performed. Results:Serum and liver LECT2 levels were elevated during hepatic IRI.Serum LECT2 protein and mRNA levels increased post reperfusion.Lect2-knockout mice had reduced weight loss;hepatic necrosis;and serum ALT,AST,creatinine,and BUN levels.rLECT2 treatment exacerbated weight loss,hepatic necrosis,and serum biomarkers(ALT,AST,creatinine,and BUN).AAV-Lect2-shRNA treatment significantly reduced weight loss,hepatic necrosis,and serum biomarkers(ALT,AST,creatinine,and BUN),indicating thera-peutic potential. Conclusions:Elevated LECT2 levels during hepatic IRI increased liver damage.Genetic knockout or shRNA-mediated knockdown of Lect2 reduced liver damage,indicating its therapeutic potential.AAV-mediated Lect2-shRNA delivery mitigated hepatic IRI,offering a potential new treatment strategy to enhance clinical outcomes for patients undergoing liver-related surgeries or trauma.
10.Associations of cardiac biomarkers with stroke severity and short-term outcome in patients with acute ischemic stroke
Chang HE ; Jie ZHAO ; Meng ZHANG ; Qing XU ; Yuru TANG ; Mengmeng QI ; Xiaoyan ZHU
International Journal of Cerebrovascular Diseases 2024;32(1):1-8
Objective:To investigate associations between cardiac biomarkers with stroke severity and short-term outcome in patients with acute ischemic stroke (AIS).Methods:Patients with AIS admitted to the Affiliated Hospital of Qingdao University from June 2018 to February 2024 whose etiological classification was large artery atherosclerosis (LAA), small vessel occlusion (SVO) or cardioembolism (CE) were included retrospectively. According to the National Institutes of Health Stroke Scale score at admission, patients were divided into mild stroke group (≤8) and moderate to severe stroke group (>8). According to the modified Rankin Scale score at discharge, patients were divided into good outcome group (≤2) and poor outcome group (>2). Multivariate logistic regression analysis was used to determine the independent correlation between cardiac biomarkers and short-term outcome. The predictive value of cardiac biomarkers for poor outcome in patients with AIS and different stroke etiology subtypes were evaluated using receiver operating characteristic (ROC) curves. Results:A total of 2 151 patients with AIS were enrolled, including 1 256 males (58.4%), aged 67.40±11.34 years. 1 079 patents were LAA type (50.2%), 679 were SVO type (31.6%), and 393 were CE type (18.3%); 1 223 were mild stroke (56.86%) and 928 (43.14%) were moderate to severe stroke; 1 357 patients (63.09%) had good short-term outcome, and 794 (36.91%) had poor short-term outcome. Multivariate logistic regression analysis showed that N-terminal pro-B type natriuretic peptide (NT-proBNP), NT-proBNP/creatine kinase (CK) isoenzyme MB (CK-MB) ratio, and CK-MB/CK ratio were independent risk factors for poor short-term outcome. ROC curve analysis shows that the CK-MB/CK ratio had a higher predictive value for short-term poor outcome in patients with AIS (the area under the curve, 0.859, 95% confidence interval 0.839-0.879). Various cardiac biomarkers had a higher predictive value for short-term outcome of CE type and LAA type, but the predictive value for short-term outcome of SVO type was lower. Conclusions:Cardiac biomarkers are associated with the severity and poor outcome of AIS. NT-proBNP/CK-MB and CK-MB/CK ratios have higher predictive value for short-term poor outcome of AIS, especially in patients with CE type.

Result Analysis
Print
Save
E-mail