1.Development and validation of the “Questionnaires on the Knowledge, Attitudes, and Practices of College Students in Response to Public Health Emergencies”
Hong JIANG ; Shuli MA ; Yufeng ZHANG ; Yue ZHAO ; Xinling YANG
China Occupational Medicine 2025;52(1):33-39
Objective To develop the "Questionnaires on the Knowledge, Attitudes, and Practices of College Students in Response to Public Health Emergencies" and validate its reliability and validity. Methods The initial questionnaire was developed according to literature review, expert consultations, and one-on-one interviews with students and educators. A total of 43 college students were selected as the pre-test subjects using the convenience sampling method. The final version of the questionnaire was developed using item analysis and expert consultations. A total of 682 college students were selected as the validation subjects using the cluster sampling method. The exploratory factor analysis and confirmatory factor analysis were used to assess the reliability and validity of the questionnaire. Results The final version of the questionnaire consisted of three dimensions: knowledge, practice, and attitude, with 5, 10, 7 items, respectively. The KMO test value for the questionnaire was 0.804, with Bartlett′s test of sphericity showing a chi-square value of 2 000.557 (P<0.01). The content validity index for each item ranged from 0.894 to 1.000, with the overall content validity index for the questionnaire being 0.966 and 0.973. The exploratory factor analysis identified three common factors, with a cumulative variance contribution rate of 54.1%. The result of confirmatory factor analysis showed good model fit, with model fit index, comparative fit index, normed fit index, incremental fit index, Tucker-Lewis Index, root mean square error of approximation of 2.960, 0.930, 0.940, 0.930, 0.950 and 0.070, respectively. The Cronbach's α coefficient for the questionnaire was 0.772, split-half reliability was 0.604, and test-retest reliability was 0.905. Conclusion The "Questionnaires on the Knowledge, Attitudes, and Practices of College Students in Response to Public Health Emergencies" demonstrates good reliability, and it is suitable for widespread application.
2.The Functional Diversity and Regulatory Mechanism of Clathrin Plaques
Yi-Ge ZHAO ; Zhao-Hong JIANG ; Qian-Yi ZHOU ; Zhi-Ming CHEN
Progress in Biochemistry and Biophysics 2025;52(8):1958-1971
Clathrin-mediated endocytosis (CME) is a critical process by which cells internalize macromolecular substances and initiate vesicle trafficking, serving as the foundation for many cellular activities. Central to this process are clathrin-coated structures (CCSs), which consist of clathrin-coated pits (CCPs) and clathrin plaques. While clathrin-coated pits are well-established in the study of endocytosis, clathrin plaques represent a more recently discovered but equally important component of this system. These plaques are large, flat, and extended clathrin-coated assemblies found on the cytoplasmic membrane. They are distinct from the more typical clathrin-coated pits in terms of their morphology, larger surface area, and longer lifespan. Recent research has revealed that clathrin plaques play roles that go far beyond endocytosis, contributing to diverse cellular processes such as cellular adhesion, mechanosensing, migration, and pathogen invasion. Unlike traditional clathrin-coated pits, which are transient and dynamic structures involved primarily in the internalization of molecules, clathrin plaques are more stable and extensive, often persisting for extended periods. Their extended lifespan suggests that they serve functions beyond the typical endocytic role, making them integral to various cellular processes. For instance, clathrin plaques are involved in the regulation of intercellular adhesion, allowing cells to better adhere to one another or to the extracellular matrix, which is crucial for tissue formation and maintenance. Furthermore, clathrin plaques act as mechanosensitive hubs, enabling the cell to sense and respond to mechanical stress, a feature that is essential for processes like migration, tissue remodeling, and even cancer progression. Recent discoveries have also highlighted the role of clathrin plaques in cellular signaling. These plaques can serve as scaffolds for signaling molecules, orchestrating the activation of various pathways that govern cellular behavior. For example, the recruitment of actin-binding proteins such as F-actin and vinculin to clathrin plaques can influence cytoskeletal dynamics, helping cells adapt to mechanical changes in their environment. This recruitment also plays a pivotal role in regulating cellular migration, which is crucial for developmental processes. Additionally, clathrin plaques influence receptor-mediated signal transduction by acting as platforms for the assembly of signaling complexes, thereby affecting processes such as growth factor signaling and cellular responses to extracellular stimuli. Despite the growing body of evidence that supports the involvement of clathrin plaques in a wide array of cellular functions, much remains unknown about the precise molecular mechanisms that govern their formation, maintenance, and turnover. For example, the factors that regulate the recruitment of clathrin and other coat proteins to form plaques, as well as the signaling molecules that coordinate plaque dynamics, remain areas of active research. Furthermore, the complex interplay between clathrin plaques and other cellular systems, such as the actin cytoskeleton and integrin-based adhesion complexes, needs further exploration. Studies have shown that clathrin plaques can respond to mechanical forces, with recent findings indicating that they act as mechanosensitive structures that help the cell adapt to changing mechanical environments. This ability underscores the multifunctional nature of clathrin plaques, which, in addition to their role in endocytosis, are involved in cellular processes such as mechanotransduction and adhesion signaling. In summary, clathrin plaques represent a dynamic and versatile component of clathrin-mediated endocytosis. They play an integral role not only in the internalization of macromolecular cargo but also in regulating cellular adhesion, migration, and signal transduction. While much has been learned about their structural and functional properties, significant questions remain regarding the molecular mechanisms that regulate their formation and their broader role in cellular physiology. This review highlights the evolving understanding of clathrin plaques, emphasizing their importance in both endocytosis and a wide range of other cellular functions. Future research is needed to fully elucidate the mechanisms by which clathrin plaques contribute to cellular processes and to better understand their implications for diseases, including cancer and tissue remodeling. Ultimately, clathrin plaques are emerging as crucial hubs that integrate mechanical, biochemical, and signaling inputs, providing new insights into cellular function and the regulation of complex cellular behaviors.
3.Clinical application of next-generation sequencing in early screening of neonatal diseases.
Li-Hong JIANG ; Ben-Qing WU ; Zheng-Yan ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(4):432-437
OBJECTIVES:
To evaluate the clinical value of next-generation sequencing (NGS) in neonatal disease screening, particularly its advantages when combined with tandem mass spectrometry (MS/MS).
METHODS:
A prospective study was conducted involving blood samples from 1 999 neonates born at the Shenzhen Guangming District People's Hospital, between May and August 2021. All samples were initially screened using MS/MS and fluorescence immunoassay, followed by NGS to detect high-frequency variation sites in 135 related pathogenic genes. Suspected positive variants were validated using Sanger sequencing or multiplex ligation-dependent probe amplification in family studies.
RESULTS:
No confirmed positive cases were found in the MS/MS analysis of the 1 999 neonates. Genetic screening identified 58 positive cases (2.90%), 732 carriers of pathogenic genes (36.62%), and 1 209 negative cases (60.48%). One case of neonatal intrahepatic cholestasis was diagnosed (0.05%, 1/1 999). Fluorescence immunoassay identified 39 cases of glucose-6-phosphate dehydrogenase (G6PD) deficiency (1.95%, 39/1 999), while genetic screening identified 43 cases of G6PD deficiency (2.15%, 43/1 999). The fluorescence immunoassay also detected 6 cases of hyperthyrotropinemia (0.30%, 6/1 999), all of whom carried DUOX2 gene variants. The top ten pathogenic gene carrier rates were G6PD (12.8%), DUOX2 (8.7%), HBB (8.2%), ATP7B (6.6%), GJB2 (5.7%), SLC26A4 (5.6%), PAH (5.6%), ACADSB (4.6%), SLC25A13 (4.2%), and SLC22A5 (4.1%).
CONCLUSIONS
NGS can serve as an effective complement to MS/MS, significantly improving the detection rate of inherited metabolic disorders in neonates. When combined with family validation, it enables precise diagnosis, particularly demonstrating complementary advantages in screening for monogenic diseases such as G6PD deficiency.
Humans
;
Infant, Newborn
;
High-Throughput Nucleotide Sequencing/methods*
;
Neonatal Screening/methods*
;
Tandem Mass Spectrometry
;
Prospective Studies
;
Female
;
Male
;
Infant, Newborn, Diseases/diagnosis*
;
Genetic Testing
4.Advances in research on gender differences in autism spectrum disorders.
Tong-Tong JIANG ; Xiu-Qiong LI ; Ting-Ting ZHAO ; Hong-Yu LI ; Qiang TANG
Chinese Journal of Contemporary Pediatrics 2025;27(4):480-486
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social impairments, repetitive behaviors, and restricted interests. Studies have shown that it is more prevalent in males than females. Although this issue has attracted academic attention since the 20th century, the specific mechanisms underlying the gender differences in ASD remain unclear. This paper reviews the impact of gender differences in ASD, focusing on the female protective effect, DNA methylation, hormone levels, and clinical manifestations. It also discusses corresponding treatment options, particularly suggesting improvements in the diagnostic process, which is often overlooked, in order to provide valuable references for the clinical diagnosis and treatment of ASD.
Humans
;
Autism Spectrum Disorder/genetics*
;
Female
;
Male
;
DNA Methylation
;
Sex Factors
;
Sex Characteristics
5.Clinical application of single-balloon and double-balloon enteroscopy in pediatric small bowel diseases: a retrospective study of 576 cases.
Can-Lin LI ; Jie-Yu YOU ; Yan-Hong LUO ; Hong-Juan OU-YANG ; Li LIU ; Wen-Ting ZHANG ; Jia-Qi DUAN ; Na JIANG ; Mei-Zheng ZHAN ; Chen-Xi LIU ; Juan ZHOU ; Ling-Zhi YUAN ; Hong-Mei ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(7):822-828
OBJECTIVES:
To evaluate the effectiveness of single-balloon and double-balloon enteroscopy in diagnosing pediatric small bowel diseases and assess the diagnostic efficacy of computed tomography enterography (CTE) for small bowel diseases using enteroscopy as the reference standard.
METHODS:
Clinical data from 576 children who underwent enteroscopy at Hunan Children's Hospital between January 2017 and December 2023 were retrospectively collected. The children were categorized based on enteroscopy type into the single-balloon enteroscopy (SBE) group (n=457) and double-balloon enteroscopy (DBE) group (n=119), and the clinical data were compared between the two groups. The sensitivity and specificity of CTE for diagnosing small bowel diseases were evaluated using enteroscopy results as the standard.
RESULTS:
Among the 576 children, small bowel lesions were detected by enteroscopy in 274 children (47.6%).There was no significant difference in lesion detection rates or complication rates between the SBE and DBE groups (P>0.05), but the DBE group had deeper insertion, longer procedure time, and higher complete small bowel examination rate (P<0.05). The complication rate during enteroscopy was 4.3% (25/576), with 18 cases (3.1%) of mild complications and 7 cases (1.2%) of severe complications, which improved with symptomatic treatment, surgical, or endoscopic intervention. Among the 412 children who underwent CTE, the sensitivity and specificity for diagnosing small bowel diseases were 44.4% and 71.3%, respectively.
CONCLUSIONS
SBE and DBE have similar diagnostic efficacy for pediatric small bowel diseases, but DBE is preferred for suspected deep small bowel lesions and comprehensive small bowel examination. Enteroscopy in children demonstrates relatively good overall safety. CTE demonstrates relatively low sensitivity but comparatively high specificity for diagnosing small bowel diseases.
Retrospective Studies
;
Treatment Outcome
;
Double-Balloon Enteroscopy/statistics & numerical data*
;
Single-Balloon Enteroscopy/statistics & numerical data*
;
Humans
;
Male
;
Female
;
Child
;
Operative Time
;
Tomography, X-Ray Computed/statistics & numerical data*
;
Sensitivity and Specificity
;
Intestine, Small/surgery*
;
Intestinal Diseases/surgery*
6.Predictive value of coronary microcirculation dysfunction after revascularization in patients with acute myocardial infarction for acute heart failure during hospitalization.
Lan WANG ; Yuliang MA ; Weimin WANG ; Tiangang ZHU ; Wenying JIN ; Hong ZHAO ; Chengfu CAO ; Jing WANG ; Bailin JIANG
Journal of Peking University(Health Sciences) 2025;57(2):267-271
OBJECTIVE:
To study incident and clinical characteristics of the coronary microcirculation dysfunction (CMD) in patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI) by myocardial contrast echocardiography (MCE) and to explore the predictive value of CMD for in-hospital acute heart failure event.
METHODS:
One hundred and forty five patients with AMI who had received PCI and completed MCE during hospitalization in Peking University People' s Hospital from November 2015 to July 2021 were enrolled in our study. The patients were divided into CMD group and normal group according to the coronary microcirculation status detected by MCE. Clinical data and MCE data of the two groups were collected and analyzed. The acute heart failure event during hospitalization was described. A multivariate Logistic regression model was built to analyze the risk of acute heart failure in patients with CMD. A receiver operating characteristic (ROC) curve was drawn to evaluate the value of CMD in predicting acute heart failure event.
RESULTS:
CMD detected by MCE occurred in 87 patients (60%). Compared with normal group, patients with CMD had higher troponin I (TnI) peak level [52.8 (8.1, 84.0) μg/L vs. 18.9 (5.7, 56.1) μg/L, P=0.005], poorer Killip grade on admission (P=0.030), different culprit vessel (P < 0.001) and more patients had thrombolysis in myocardial infarction (TIMI) flow pre-PCI less than grade 3 in culprit vessel (65.1% vs. 43.1%, P=0.025). Meanwhile, patients with CMD had poorer left ventricular ejection fraction (LVEF) [52% (43%, 58%) vs. 61% (54%, 66%)], poorer global longitudinal strain (GLS) [-11.2% (-8.7%, -14.0%) vs.-13.9% (-10.8%, -17.0%)] and worse wall motion score index (WMSI) (1.58±0.36 vs. 1.25± 0.24) (P all < 0.001). Acute left heart failure happened in 13.8% of the CMD patients, which were significant higher than that in the patients with normal coronary microcirculation perfusion (1.7%, P=0.013). After correcting for the culprit vessel, the TIMI flow pre-PCI in the culprit vessel and the peak TnI value, the risk of acute left heart failure in the patients with CMD was still high (OR=9.120, 95%CI: 1.152-72.192, P=0.036). The area under ROC curve (AUC) was 0.677 (95%CI: 0.551-0.804, P=0.035).
CONCLUSION
The incidence of CMD detected by MCE in patients with AMI post-PCI was 60%. Patients with CMD have a higher risk of acute left heart failure during hospitalization.
Humans
;
Heart Failure/physiopathology*
;
Microcirculation
;
Percutaneous Coronary Intervention/adverse effects*
;
Myocardial Infarction/complications*
;
Male
;
Female
;
Hospitalization
;
Middle Aged
;
Aged
;
Echocardiography
;
Coronary Circulation
;
Predictive Value of Tests
;
Troponin I/blood*
7.Shexiang Tongxin Dropping Pill Improves Stable Angina Patients with Phlegm-Heat and Blood-Stasis Syndrome: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial.
Ying-Qiang ZHAO ; Yong-Fa XING ; Ke-Yong ZOU ; Wei-Dong JIANG ; Ting-Hai DU ; Bo CHEN ; Bao-Ping YANG ; Bai-Ming QU ; Li-Yue WANG ; Gui-Hong GONG ; Yan-Ling SUN ; Li-Qi WANG ; Gao-Feng ZHOU ; Yu-Gang DONG ; Min CHEN ; Xue-Juan ZHANG ; Tian-Lun YANG ; Min-Zhou ZHANG ; Ming-Jun ZHAO ; Yue DENG ; Chang-Jiang XIAO ; Lin WANG ; Bao-He WANG
Chinese journal of integrative medicine 2025;31(8):685-693
OBJECTIVE:
To evaluate the efficacy and safety of Shexiang Tongxin Dropping Pill (STDP) in treating stable angina patients with phlegm-heat and blood-stasis syndrome by exercise duration and metabolic equivalents.
METHODS:
This multicenter, randomized, double-blind, placebo-controlled clinical trial enrolled stable angina patients with phlegm-heat and blood-stasis syndrome from 22 hospitals. They were randomized 1:1 to STDP (35 mg/pill, 6 pills per day) or placebo for 56 days. The primary outcome was the exercise duration and metabolic equivalents (METs) assessed by the standard Bruce exercise treadmill test after 56 days of treatment. The secondary outcomes included the total angina symptom score, Chinese medicine (CM) symptom scores, Seattle Angina Questionnaire (SAQ) scores, changes in ST-T on electrocardiogram and adverse events (AEs).
RESULTS:
This trial enrolled 309 patients, including 155 and 154 in the STDP and placebo groups, respectively. STDP significantly prolonged exercise duration with an increase of 51.0 s, compared to a decrease of 12.0 s with placebo (change rate: -11.1% vs. 3.2%, P<0.01). The increase in METs was significantly greater in the STDP group than in the placebo group (change: -0.4 vs. 0.0, change rate: -5.0% vs. 0.0%, P<0.01). The improvement of total angina symptom scores (25.0% vs. 0.0%), CM symptom scores (38.7% vs. 11.8%), reduction of nitroglycerin consumption (100.0% vs. 11.3%), and all domains of SAQ, were significantly greater with STDP than placebo (all P<0.01). The changes in Q-T intervals at 28 and 56 days from baseline were similar between the two groups (both P>0.05). Twenty-five participants (16.3%) with STDP and 16 (10.5%) with placebo experienced AEs (P=0.131), with no serious AEs observed.
CONCLUSION
STDP could improve exercise tolerance in patients with stable angina and phlegm-heat and blood stasis syndrome, with a favorable safety profile. (Registration No. ChiCTR-IPR-15006020).
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Angina, Stable/physiopathology*
;
Aged
;
Syndrome
;
Treatment Outcome
;
Placebos
;
Tablets
8.Dual activation of GCGR/GLP1R signaling ameliorates intestinal fibrosis via metabolic regulation of histone H3K9 lactylation in epithelial cells.
Han LIU ; Yujie HONG ; Hui CHEN ; Xianggui WANG ; Jiale DONG ; Xiaoqian LI ; Zihan SHI ; Qian ZHAO ; Longyuan ZHOU ; JiaXin WANG ; Qiuling ZENG ; Qinglin TANG ; Qi LIU ; Florian RIEDER ; Baili CHEN ; Minhu CHEN ; Rui WANG ; Yao ZHANG ; Ren MAO ; Xianxing JIANG
Acta Pharmaceutica Sinica B 2025;15(1):278-295
Intestinal fibrosis is a significant clinical challenge in inflammatory bowel diseases, but no effective anti-fibrotic therapy is currently available. Glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP1R) are both peptide hormone receptors involved in energy metabolism of epithelial cells. However, their role in intestinal fibrosis and the underlying mechanisms remain largely unexplored. Herein GCGR and GLP1R were found to be reduced in the stenotic ileum of patients with Crohn's disease as well as in the fibrotic colon of mice with chronic colitis. The downregulation of GCGR and GLP1R led to the accumulation of the metabolic byproduct lactate, resulting in histone H3K9 lactylation and exacerbated intestinal fibrosis through epithelial-to-mesenchymal transition (EMT). Dual activating GCGR and GLP1R by peptide 1907B reduced the H3K9 lactylation in epithelial cells and ameliorated intestinal fibrosis in vivo. We uncovered the role of GCGR/GLP1R in regulating EMT involved in intestinal fibrosis via histone lactylation. Simultaneously activating GCGR/GLP1R with the novel dual agonist peptide 1907B holds promise as a treatment strategy for alleviating intestinal fibrosis.
9.Protein palmitoylation: A potential therapeutic target in cardiovascular diseases.
Sijia ZHAO ; Yanyan YANG ; Hong LI ; Pin SUN ; Xiangqin HE ; Chao WANG ; Jingjing ZHANG ; Yu TIAN ; Tao YU ; Zhirong JIANG
Acta Pharmaceutica Sinica B 2025;15(10):5127-5144
Palmitoylation, an essential covalent attachment of a fatty acid (usually C16 palmitate) to cysteine residues within proteins, is crucial for regulating protein functionality and enzymatic activities. This lipid modification facilitates the anchoring of proteins to cellular membranes, dictating their subcellular distribution and influencing protein transport dynamics and intracellular positioning. Additionally, it plays a role in regulating protein degradation through the ubiquitin-proteasome system. Palmitoylation is implicated in the pathogenesis and progression of cardiovascular diseases by modulating substrates and prompting additional post-translational modifications, as well as by interacting with other molecular alterations. Moreover, an intervention strategy focusing on palmitoylation processes is anticipated to offer novel therapeutic avenues for cardiovascular pathologies and address extant challenges in clinical settings. This review consolidates current research on the role and importance of palmitoylation in cardiovascular diseases by exploring its regulatory functions, the catalyzing enzymes, and the involved substrates. It highlights recent discoveries connecting palmitoylation-targeted therapies to cardiovascular health and examines potential approaches and future challenges in cardiovascular treatment.
10.Dimethyl fumarate modulates M1/M2 macrophage polarization to ameliorate periodontal destruction by increasing TUFM-mediated mitophagy.
Liang CHEN ; Pengxiao HU ; Xinhua HONG ; Bin LI ; Yifan PING ; ShuoMin CHEN ; Tianle JIANG ; Haofu JIANG ; Yixin MAO ; Yang CHEN ; Zhongchen SONG ; Zhou YE ; Xiaoyu SUN ; Shufan ZHAO ; Shengbin HUANG
International Journal of Oral Science 2025;17(1):32-32
Periodontitis is a common oral disease characterized by progressive alveolar bone resorption and inflammation of the periodontal tissues. Dimethyl fumarate (DMF) has been used in the treatment of various immune-inflammatory diseases due to its excellent anti-inflammatory and antioxidant functions. Here, we investigated for the first time the therapeutic effect of DMF on periodontitis. In vivo studies showed that DMF significantly inhibited periodontal destruction, enhanced mitophagy, and decreased the M1/M2 macrophage ratio. In vitro studies showed that DMF inhibited macrophage polarization toward M1 macrophages and promoted polarization toward M2 macrophages, with improved mitochondrial function, inhibited oxidative stress, and increased mitophagy in RAW 264.7 cells. Furthermore, DMF increased intracellular mitochondrial Tu translation elongation factor (TUFM) levels to maintain mitochondrial homeostasis, promoted mitophagy, and modulated macrophage polarization, whereas TUFM knockdown decreased the protective effect of DMF. Finally, mechanistic studies showed that DMF increased intracellular TUFM levels by protecting TUFM from degradation via the ubiquitin-proteasomal degradation pathway. Our results demonstrate for the first time that DMF protects mitochondrial function and inhibits oxidative stress through TUFM-mediated mitophagy in macrophages, resulting in a shift in the balance of macrophage polarization, thereby attenuating periodontitis. Importantly, this study provides new insights into the prevention of periodontitis.
Dimethyl Fumarate/pharmacology*
;
Mitophagy/drug effects*
;
Animals
;
Mice
;
Macrophages/metabolism*
;
Periodontitis/prevention & control*
;
RAW 264.7 Cells
;
Oxidative Stress/drug effects*
;
Peptide Elongation Factor Tu/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Mitochondria/drug effects*

Result Analysis
Print
Save
E-mail