1.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α.
2.Study on relationships of MS4A1 gene polymorphism with blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma
Feng SHI ; Tao LIU ; He HUANG ; Caifu FANG ; Shaoxing GUAN ; Zhang ZHANG ; Zhao WANG ; Xiaojie FANG ; Zhuojia CHEN ; Shu LIU
China Pharmacy 2025;36(13):1641-1647
OBJECTIVE To explore the effects of CD20 coding gene (MS4A1) polymorphism on the blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma. METHODS A prospective observational study was conducted on 160 newly diagnosed non-Hodgkin’s lymphoma patients who received the R-CHOP regimen at the Sun Yat Sen University Cancer Center from January 2016 to December 2020, with a minimum follow-up period of approximately 5 years. The blood concentration of rituximab was detected by enzyme-linked immunosorbent assay. MS4A1 tagSNPs were selected by Haploview4.2 software, including rs1051461, rs17155034, rs4939364, and rs10501385. The genotype of MS4A1 was detected by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Univariate linear regression analysis was employed to examine the correlation between various factors(demographic, clinical, and genotypic variables) in patients and the steady-state trough concentration of rituximab during the first course of treatment, followed by multivariate linear regression analysis. Kaplan-Meier curves were drawn to evaluate progression-free survival (PFS) and overall survival (OS). Using MS4A1 genotype and tumor stage as independent variables, Cox regression model was employed to evaluate the factors influencing patient prognosis. RESULTS The blood concentration of rituximab in MS4A1 rs10501385 CC carriers was 15.20 μg/mL,which was significantly lower than 21.95 μg/mL in AA+AC carriers (P<0.05). The multivariate linear regression model incorporating tumor stage and MS4A1 rs10501385 polymorphism explained 7.3% of the interindividual variability in rituximab concentrations. Compared with MS4A1 rs1051461 CC carriers, CT+TT carriers had significantly prolonged PFS and OS (P<0.05). The Cox proportional hazards regression model showed that the MS4A1 rs1051461 CC genotype (HR=4.406, 95%CI:1.743-11.137, P<0.05) and tumor Ⅲ&Ⅳ (HR=3.233, 95%CI: 1.413-7.399, P<0.05) were independent risk factors for PFS. CONCLUSIONS The tumor staging and MS4A1 rs10501385 polymorphism are key influencing factors for blood concentration of rituximab, and MS4A1 rs1051461 polymorphism significantly affects PFS in non-Hodgkin’s lymphoma patients.
3.Mining molecular biomarkers regulating the occurrence of kidney renal clear cell carcinoma based on bioinformatics methods
Feng GUO ; Chenyu WANG ; Zhenfeng SHI ; Jianhua ZHAO ; Wenlong FAN ; Kadeer AIHEMAITI ; Zecheng NI
Journal of Modern Urology 2025;30(3):215-222
Objective: To identify biomolecular markers closely related to the occurrence of kidney renal clear cell carcinoma (KIRC) and verify their expression levels in clinical samples. Methods: Stage Ⅰ KIRC mRNA sequencing data were obtained from The Cancer Genome Atlas (TCGA).Principal component analysis (PCA) was used for dimensionality reduction to screen differentially expressed genes (DEGs),which then underwent GO and KEGG analyses.Weighted gene co-expression network analysis (WGCNA) was used to screen genes significantly related to KIRC,and a protein-protein interaction (PPI) network was constructed to screen hub genes.The diagnostic value of hub genes was evaluated with receiver operating characteristic (ROC) curve,and their prognostic value was analyzed using survival curve plots.The correlation between the mRNA expressions of hub genes and the pathological stages of KIRC was analyzed.Clinical samples of 20 patients with stage Ⅰ KIRC treated in our hospital were included,and the expressions of the hub genes in cancerous and adjacent tissues were detected with reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR),Western blotting,and enzyme-linked immunosorbent assay (ELISA). Results: A total of 8223 DEGs were screened out,including 4092 up-regulated ones and 4131 down-regulated ones.GO analysis showed that DEGs were related to bioadhesion,plasma membrane composition,and transporter activity.KEGG analysis showed that DEGs were related to pathways such as cell adhesion molecules,cytokine-cytokine receptor interactions,and interactions between viral proteins and cytokines and cytokine receptors.WGCNA analysis obtained 171 genes that were significantly related to stage Ⅰ KIRC.The hub gene,lymphocyte cytosolic protein 2 (LCP2),screened out by the PPI network,was significantly related to stage Ⅰ KIRC.The area under the ROC curve was 0.96.The expression level was negatively correlated with the overall survival rate of patients.The expression of LCP2 was related to the stage and lymph node metastasis.Clinical verification showed that the mRNA and protein relative expressions of LCP2 in KIRC tissues were significantly higher than those in adjacent tissues (P<0.000 1). Conclusion: LCP2 is significantly up-regulated in stage Ⅰ KIRC tissues and can be used as a potential biomarker for the early diagnosis and treatment of KIRC.
4.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
5.Advances in pharmacological effects of ginseng,acorus calamus and its couplet medicine on Alzheimer's disease
Yu-Chen ZHU ; Bo-Yu KUANG ; Jin-Ping LIANG ; Xiao-Lei PEI ; Jia-Zhu ZHAO ; Shi-Feng CHU ; Nai-Hong CHEN ; Yan-Tao YANG
Chinese Pharmacological Bulletin 2024;40(5):817-822
The pathogenesis of Alzheimer's disease(AD)is complex and unclear.Existing drugs can only alleviate its symp-toms,and there is an urgent need to develop effective therapeutic drugs.As the representative drugs of tonic and enlightening medicine,ginseng and acorus calamus have pharmacological effects to improve memory,improve learning ability and reduce cognitive impairment,which are commonly used in Chinese med-icine for the treatment of dementia.The combination of ginseng and acorus calamus can further promote the active ingredients in-to brain to exert their medicinal effects,and delay the process of AD through anti-inflammatory,anti-oxidative stress,modulation of neuronal-synaptic plasticity and other multiple pathways,with multi-level,multi-system and multi-target action characteristics.This paper attempts to summarize the existing research results and lay the foundation for further exploring the synergistic mech-anism of action of ginseng-acorus calamus combination and the dose-effect relationship of the combination,so as to provide a sci-entific basis for the development of innovative Chinese medicines for the prevention and treatment of AD.
6.Review of microglial efferocytosis in ischemic stroke
Ping-Long FAN ; Hua-Qing LAI ; Zhao ZHANG ; Shi-Feng CHU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(8):1407-1412
Once ischemic stroke occurs,severely insufficient blood supply causes massive neuronal apoptosis and necrosis,leading to the release of damage-associated molecular patterns(DAMPs)that exacerbate neuroinflammation and worsen brain damage.As the resident efferocytes in central nervous system,microglia possess the capability to phagocytose and eliminate ap-optotic cells by efferocytosis before necrosis occurs,thereby mit-igating the release of DAMPs and the accumulation of cellular debris.This process is crucial for neuroinflammation reduction and neurorestoration.Hence,a comprehensive understanding of the regulatory mechanism of microglial efferocytosis post-ische-mia,as well as its impact on neuroinflammation and cerebral damage,has the potential to advance diagnostic and therapeutic approaches for ischemic stroke.Here,we outline the molecular mechanisms and signaling pathways involved in microglial effero-cytosis following ischemic stroke,and summarize the research progress on drugs targeting microglial efferocytosis to enhance stroke prognosis.
7.Phylogenetic and antigenic analysis on hemagglutinin gene of influenza B virus (Victoria) in 2023-2024 surveillance season in Beijing
Guilan LU ; Jiachen ZHAO ; Weixian SHI ; Li ZHANG ; Yimeng LIU ; Zhaomin FENG ; Ying SUN ; Daitao ZHANG ; Xiaomin PENG
Chinese Journal of Experimental and Clinical Virology 2024;38(4):415-421
Objective:To disclose phylogenetic and antigenic characteristics of hemagglutinin (HA) gene of influenza B virus (Victoria) (BV) in the 2023-2024 influenza surveillance season in Beijing, and understand the matching with influenza vaccine component strain.Methods:Pharyngeal swab specimens from influenza like-illness (ILI) in the 2023-2024 influenza surveillance season were collected from surveillance network labs in Beijing and BV strains were isolated through MDCK or chicken embryo culture. After extracting nucleic acid, HA gene was amplified and sequenced. The nucleotide and amino acid sequence identity were conducted and the maximum likelihood method in Mega 5.0 software was used to construct the phylogenetic tree of HA gene. N-glycosylation sites of HA were performed online. Furthermore, three-dimensional structure of HA was available from SWISS-MODEL homologous modeling. Hemagglutination inhibition (HI) tests were performed to analyze antigenic characteristics of HA of BV strains.Results:Fifty-four BV strains were randomly selected to be analyzed further. Compared with the HA gene of this influenza season vaccine strain (B/Austria/1359417/2021), there are three amino acid mutations among all BV strains, two of which are located in two different antigenic determinants. Furthermore, the phylogenetic tree analysis revealed that only one subgroup of 1A.3a.2 was circulating simultaneously. All BV strains are located in Clade 1A.3a.2 subgroup, and in the same subgroup with that of the vaccine component BV strain in 2023-2024. All BV strains have the same glycosylation sites as that of the vaccine component BV strain in 2023-2024. Antigenic analysis showed that all BV strains were antigenically similar with its vaccine strain.Conclusions:In the 2023-2024 influenza surveillance season, the prevalent BV strains in the population in Beijing city are located in Clade 1A. 3a. 2 subgroup. The antigen matching between BV epidemic strains and vaccine BV components is relatively high during this surveillance season.
8.Study of pre-hospital temporary VV-ECMO for the treatment of high-altitude severe blast lung injury based on animal models
Zheng-Bin WU ; Shi-Feng SHAO ; Liang-Chao ZHANG ; Zhao-Xia DUAN ; Yao-Li WANG ; Zong-An LIANG ; Jian-Min WANG
Journal of Regional Anatomy and Operative Surgery 2024;33(5):373-378
Objectives To explore the feasibility of temporary veno-venous extracorporeal membrane oxygenation(VV-ECMO)technology for early on-site treatment,through establishing an animal model of severe blast lung injury in goats by free-field chemical explosion experiments in high-altitude regions.Methods A total of 16 adult goats were selected,and divided into the control group and the treatment group according to the random number table method,with 8 goats in each group.A model of severe blast lung injury was established at an altitude of 4 600 meters above sea level,then the goats in the control group were given respiratory support and the goats in the treatment group were given temporary VV-ECMO treatment.The survival status of the goats 15 minutes after injury was recorded,the vital signs[including body temperature,respiration rate,heart rate,and mean arterial pressure(MAP)]and arterial blood gas analysis indicators[including pH,arterial partial pressure of oxygen(PO2),arterial partial pressure of carbon dioxide(PCO2),oxygen saturation(SaO2),lactate(LAC),calcium(Ca2+),hematocrit(HCT),and hemoglobin(Hb)]before injury and 1 hour,2 hours,3 hours after injury were compared in the two groups.The post-mortem examination was performed on all dead goats and sacrificed goats after treatment,the severity of lung injury was assessed by organ injury scaling(OIS),and the lung injury score was evaluated by abbreviated injury scale(AIS).The wet-to-dry weight ratio(W/D)and lung coefficient were calculated.Results Within 15 minutes after the explosion,4 goats in the control group died and 4 goats survived;and 5 goats in the treatment group died and 3 goats survived.There was no statistically significant difference in the body temperature,respiration rate,heart rate,or MAP before and after injury between the two groups(P>0.05).The PaO2 and SaO2 1 hour,2 hours,and 3 hours after injury in the treatment group were superior than those in the control group(P<0.05),the Ca2+ 2 hours after injury was significantly higher than that in the control group(P<0.05),and there was no statistically significant difference in the pH,PCO2,LAC,HCT or Hb at different time points after injury between the two groups(P>0.05).There was no statistically significant difference in the OIS,AIS or lung coefficient between the two groups(P>0.05),but the W/D of the lung tissue in the control group was lower than that in the treatment group(P<0.05).Conclusion We have established a novel,feasible,and stable treatment effect temporary VV-ECMO animal treatment strategy for the first time in the high-altitude regions,which can provide animal experiment evidence for the early on-site VV-ECMO treatment of severe blast lung injury in high-altitude regions.
9.Effect and mechanism of miR-217 targeting ERK2 expression on activity and immune escape of non-small cell lung cancer cells
Liping CHEN ; Ping FENG ; Weijia LIN ; Baoli XIANG ; Jianqing ZHAO ; Qiang JI ; Yanhong CHEN ; Yongxing SHI
Chinese Journal of Immunology 2024;40(9):1895-1901
Objective:To investigate the effect and mechanism of miR-217 targeted regulation of extracellular signal-regulated kinase 2(ERK2)expression on activity and immune escape of non-small cell lung cancer cells(NSCLC).Methods:qRT-PCR was used to detect expression levels of miR-217 and ERK2 mRNA in NSCLC tissues,adjacent tissues,and HLF-1,A549 and HCC827 cell lines.Analyzed prognosis and survival status of NSCLC patients with different miR-217 expression level.Bioinformatics and dual luciferase gene reporting experiments were used to analyze the targeting relationship between miR-217 and ERK2.Cultivated NSCLC A549 cells and divided them into NC group,miR-217 inhibitor group,miR-217 mimic group,miR-217 mimic+ERK2 NC group and miR-217 mimic+ERK2 group.Except for the NC group without any treatment,all other groups were transfected with corresponding plasmids to analyze the proliferation activity and immune escape status of A549 cells in each group,and clarified the mechanism of action.Results:Compared with adjacent tissues,expression of miR-217 in NSCLC tissue was decreased,while expression of ERK2 mRNA was increased(P<0.05).Compared with human normal lung fibroblast HLF-1 cell lines,expression of miR-217 in NSCLC cell lines A549 and HCC827 were decreased,while expression of ERK2 mRNA was increased(P<0.05).Analysis of the relationship be-tween miR-217 and prognosis of NSCLC patients based on Kaplan-Meier Plotter database showed that low expression of miR-217 was associated with poor prognosis of patients(HR=0.90,P=0.033).Dual fluorescein reporter genes showed matching sequences between the 3'UTR regions of miR-217 and ERK2.miR-217 mimic fragment could inhibit ERK2-WT signal,but had no effect on ERK2-MUT.Compared with NC group,cell proliferation activity,PD-L1 and PD-L2 mRNA expression levels of miR-217 inhibitor group were in-creased,while CD8+T cell activity was decreased,and cell proliferation activity,PD-L1 and PD-L2 mRNA expression levels of miR-217 mimic group were decreased,while CD8+T cell activity was increased(P<0.05).Compared with miR-217 mimic group,cell pro-liferation activity,CD8+T cell activity,PD-L1 and PD-L2 mRNA expression levels of miR-217 mimic+ERK2 NC group had no signifi-cant changes(P>0.05),cell proliferation activity,PD-L1 and PD-L2 mRNA expression levels of miR-217 mimic+ERK2 group were increased,while CD8+T cell activity was decreased(P<0.05).Conclusion:Overexpression of miR-217 can reduce the activity of NSCLC cell A549,inhibit the expression of PD-L1,activate CD8+T cells in tumor microenvironment,and then inhibit immune es-cape,which may play a role by targeting ERK2.
10.Guiding significance of immune factors and T lymphocyte subsets in immuno-modulatory therapy for sepsis
Jing ZHAO ; Lixia FENG ; Jingxin SHI ; Fengjiang FAN
Chinese Journal of Immunology 2024;40(12):2614-2622
Objective:To investigate the guiding significance of monitoring of immune factors and T lymphocyte subsets in immunomodulatory treatment of sepsis.Methods:Eighty patients with sepsis admitted to Nangyang First People's Hospital from June 2022 to December 2023 were selected as sepsis group,and 80 healthy volunteers who underwent physical examination during the same period were selected as health group.Detection of immune factors[complement C3,IgA,IgG,IgM,IFN-γ,programmed cell death receptor-1(PD-1)]and T lymphocyte subsets(CD4+,CD8+,CD4+/CD8+)on the day of physical examination in healthy group,the day after sepsis group was enrolled,before treatment,and on day 1,3,and 7 after treatment,expressions of immune factors and T lymphocyte subsets were compared between the two groups.All 80 patients with sepsis received comprehensive treatment,during which thymosine-α1 was added for immunoconditioning treatment.Patients were divided into groups according to the improvement of their condition after immunoconditioning treatment[low-risk group(n=31),medium-risk group(n=34),high-risk group(n=15)]and disease outcome[survival group(n=55)and death group(n=25)].To analyze the efficacy of immune factors and T lymphocyte subsets in predicting the condition improvement and disease outcome of patients with sepsis after immune conditioning treatment.Results:Compared with healthy group,expression levels of immune factor complements C3,IgA,IgG,IgM and IFN-γ in sepsis group were decreased,relative expression level of PD-1 mRNA was increased,the values of CD4+T and CD4+T/CD8+T of T lymphocyte subsets were decreased,while CD8+T was increased(P<0.05).Compared with before treatment and 1 day after treatment,expression levels of complements C3,IgA,IgG,IgM,IFN-γ,CD4+T and CD4+T/CD8+T of T lymphocyte subsets were significantly increased in patients with sepsis after treatment on 3 and 7 days,while the relative expression level of PD-1 mRNA and CD8+T were significantly decreased(P<0.05).Condition of sepsis patients improved significantly after immune conditioning treatment,that is,proportion of low-risk patients increased,and proportion of medium-risk patients and high-risk patients decreased(Z=6.954,P<0.05).Levels of C3,IgA,IgG,IgM,IFN-γ,CD4+T and CD4+T/CD8+T in high-risk groups were significantly decreased,while PD-1 and CD8+T were significantly increased in low-risk and medium-risk groups(P<0.05).Levels of C3,IgA,IgG,IgM,IFN-γ,CD4+T and CD4+T/CD8+T in death group were significantly lower than those in survival group,while PD-1 and CD8+were significantly increased(P<0.05).ROC curve analysis showed that AUC of the combination of immune factors and T lymphocyte subsets to predict the improve-ment of the condition of sepsis patients after immune conditioning treatment was 0.923,the sensitivity was 89.90%,and the specificity was 82.31%.The efficacy of predicting the disease outcome of sepsis patients after immune conditioning treatment showed that the pre-dicted AUC was 0.965.The sensitivity was 95.60%and the specificity was 86.57%,which were obviously better than the single item.Conclusion:Sepsis patients have immune dysfunction related to immune factors and abnormal T lymphocyte subsets,immunomodu-latory therapy can help improve immune dysfunction,monitor immune factors upon admission,and levels of T lymphocyte subsets are helpful for early prediction of disease progression and prognosis in sepsis patients after immunomodulatory therapy.

Result Analysis
Print
Save
E-mail