1.Expert consensus on the prevention and treatment of enamel demineralization in orthodontic treatment.
Lunguo XIA ; Chenchen ZHOU ; Peng MEI ; Zuolin JIN ; Hong HE ; Lin WANG ; Yuxing BAI ; Lili CHEN ; Weiran LI ; Jun WANG ; Min HU ; Jinlin SONG ; Yang CAO ; Yuehua LIU ; Benxiang HOU ; Xi WEI ; Lina NIU ; Haixia LU ; Wensheng MA ; Peijun WANG ; Guirong ZHANG ; Jie GUO ; Zhihua LI ; Haiyan LU ; Liling REN ; Linyu XU ; Xiuping WU ; Yanqin LU ; Jiangtian HU ; Lin YUE ; Xu ZHANG ; Bing FANG
International Journal of Oral Science 2025;17(1):13-13
Enamel demineralization, the formation of white spot lesions, is a common issue in clinical orthodontic treatment. The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment. The prevention, diagnosis, and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties. This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment, advocating for proactive prevention, early detection, timely treatment, scientific follow-up, and multidisciplinary management of white spot lesions throughout the orthodontic process, thereby maintaining the dental health of patients during orthodontic treatment.
Humans
;
Consensus
;
Dental Caries/etiology*
;
Dental Enamel/pathology*
;
Tooth Demineralization/etiology*
;
Tooth Remineralization
2.Discovery of novel 4-phenylquinazoline-based BRD4 inhibitors for cardiac fibrosis.
Zhangxu HE ; Haomiao JIAO ; Qi AN ; Xin ZHANG ; Dan ZENGYANGZONG ; Jiale XU ; Hongmin LIU ; Liying MA ; Wen ZHAO
Acta Pharmaceutica Sinica B 2022;12(1):291-307
Bromodomain containing protein 4 (BRD4), as an epigenetic reader, can specifically bind to the acetyl lysine residues of histones and has emerged as an attractive therapeutic target for various diseases, including cancer, cardiac remodeling and heart failure. Herein, we described the discovery of hit 5 bearing 4-phenylquinazoline skeleton through a high-throughput virtual screen using 2,003,400 compound library (enamine). Then, structure-activity relationship (SAR) study was performed and 47 new 4-phenylquinazoline derivatives toward BRD4 were further designed, synthesized and evaluated, using HTRF assay set up in our lab. Eventually, we identified compound C-34, which possessed better pharmacokinetic and physicochemical properties as well as lower cytotoxicity against NRCF and NRCM cells, compared to the positive control JQ1. Using computer-based molecular docking and cellular thermal shift assay, we further verified that C-34 could target BRD4 at molecular and cellular levels. Furthermore, treatment with C-34 effectively alleviated fibroblast activation in vitro and cardiac fibrosis in vivo, which was correlated with the decreased expression of BRD4 downstream target c-MYC as well as the depressed TGF-β1/Smad2/3 signaling pathway. Taken together, our findings indicate that novel BRD4 inhibitor C-34 tethering a 4-phenylquinazoline scaffold can serve as a lead compound for further development to treat fibrotic cardiovascular disease.

Result Analysis
Print
Save
E-mail