1.Identification and Biological Characterization of Pathogen and Screening of Effective Fungicides for Wilt of Tetradium ruticarpum
Yuxin LIU ; Qin XU ; Yue YUAN ; Tiantian GUO ; Zheng'en XIAO ; Shaotian ZHANG ; Ming LIU ; Fuqiang YIN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):198-206
ObjectiveTo identify the pathogen species responsible for the wilt disease of Tetradium ruticarpum in Chongqing, investigate there biological characteristics, and screen effective fungicides, so as to provide a theoretical basis for disease control in production. MethodsThe pathogen was isolated via the tissue culture method. Pathogenicity was verified according to Koch's postulates. The pathogen was identified based on morphological characteristics and multi-gene phylogenetic analysis. The mycelial growth rate method was used for biological characterization of the pathogen and fungicide screening. ResultsThe pathogen colonies were nearly circular with irregular edges, white, short, velvety aerial hyphae, and pale purple undersides. Macroconidia were colorless, sickle-shaped, with 3-5 septa, while microconidia were transparent, elliptical, aseptate or with 1-2 septa. Multi-gene phylogenetic analysis showed that the pathogen clustered in the same clade as Fusarium fujikuroi with 100% support, which, combined with morphological characteristics, identified the pathogen causing wilt of T. ruticarpum in Chongqing as F. fujikuroi. The optimal conditions for the mycelial growth of F. fujikuroi were mung bean agar (MBA) with glucose as the carbon source, beef extract and yeast powder as nitrogen sources, 28 ℃, pH 7.0, and alternating light/dark conditions. The optimal conditions for sporulation were potato dextrose agar (PDA) with glucose as the carbon source, beef extract as the nitrogen source, 28 ℃, pH 7.0, and complete darkness. Among chemical fungicides, phenazine-1-carboxylic acid exhibited the strongest inhibitory effect on F. fujikuroi. Shenqinmycin and tetramycin were the most effective bio-fungicides. ConclusionThis study is the first to report F. fujikuroi as the causal agent of wilt disease in T. rutaecarpa. The chemical fungicide phenazine-1-carboxylic acid and the bio-fungicides shenqinmycin and tetramycin showed strong inhibitory effects against F. fujikuroi.
2.Effects of Mitoxantrone liposomes on the proliferation,migration and stemness in ovarian cancer cells
Dong WANG ; Yue ZHANG ; Baiwang CHU ; Hua SUN
China Pharmacy 2026;37(1):42-48
OBJECTIVE To investigate the effects of Mitoxantrone liposomes (Lipo-MIT) on the proliferation, migration and cancer stem cell (CSCs) stemness of ovarian cancer cells, as well as to explore its mechanism of action based on the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. METHODS The effects of Lipo-MIT on cell proliferation, migration and the stemness characteristics of CSCs were investigated through in vitro experiments. A human ovarian cancer A2780 cells xenograft tumor model of nude mouse was established to explore the effects of Lipo-MIT at doses of 2 and 5 mg/kg on the safety of tumor-bearing mice, as well as in vivo tumor growth and the pathological characteristics of tumor tissues. The influence of Lipo-MIT on the expression levels of PI3K/AKT pathway-related proteins, epithelial-mesenchymal transition related proteins, and stemness related proteins in both cells and tumor tissues was also investigated. RESULTS The half maximal inhibitory concentrations of Lipo-MIT against A2780, SK-OV3, and OV-CAR5 cells were 0.72, 5.41, and 2.77 μmol/L, respectively. Compared with solvent control (0.1% dimethyl sulfoxide), 0.5-2.5 μmol/L Lipo-MIT significantly reduced the cell colony formation rate, shortened the cell migration distance, decreased the number of migrated cells, down-regulated the protein expression of N-cadherin, up-regulated the protein expression of E-cadherin (P<0.05), and also decreased the stem cell sphere formation frequency and down-regulated the protein expression of aldehyde dehydrogenase 1A1 (ALDH1A1) (P<0.05). Additionally, 1.0 and 2.5 μmol/L Lipo-MIT significantly reduced the stem cell sphere formation probability and down-regulated the protein expression of sex determining region Y box protein 2 in cells (P<0.05). In vivo experimental results demonstrated that 2, 5 mg/kg Lipo-MIT had no significant effects on the body weight, food intake, water intake, and organ (heart, liver, spleen, lung, and kidney) indices of tumor-bearing nude mice (P>0.05), but could significantly improve the pathological changes of tumor tissues and remarkably inhibit the protein expressions of N-cadherin, CD133 and ALDH1A1( only at 5 mg/kg Lipo-MIT), up-regulate the expression of E- cadherin (only at 5 mg/kg Lipo-MIT) in tumor tissues (P<0.05). Lipo-MIT at different concentrations/doses significantly reduced the phosphorylation levels of PI3K and AKT proteins in cells/tumor tissues (P<0.05). CONCLUSIONS Lipo-MIT can inhibit the proliferation and migration of ovarian cancer cells and the stemness by suppressing the activity of the PI3K/AKT pathway.
3.Epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome in Zhejiang Province
LÜ ; Jing ; XU Xinying ; QIAO Yingyi ; SHI Xinglong ; YUE Fang ; LIU Ying ; CHENG Chuanlong ; ZHANG Yuqi ; SUN Jimin ; LI Xiujun
Journal of Preventive Medicine 2026;38(1):10-14
Objective:
To analyze the epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome (SFTS) in Zhejiang Province from 2019 to 2023, so as to provide the reference for strengthening SFTS prevention and control.
Methods:
Data on laboratory-confirmed SFTS cases in Zhejiang Province from 2019 to 2023 were collected through the Infectious Disease Reporting Information System of Chinese Disease Prevention and Control Information System. Meteorological data, geographic environment and socioeconomic factors during the same period were collected from the fifth-generation European Centre for Medium-Range Weather Forecasts, Geospatial Data Cloud, and Zhejiang Statistical Yearbook, respectively. Descriptive epidemiological methods were used to analyze the epidemiological characteristics of SFTS from 2019 to 2023, and a Bayesian spatio-temporal model was constructed to analyze the influencing factors of SFTS incidence.
Results:
A total of 578 SFTS cases were reported in Zhejiang Province from 2019 to 2023, with an annual average incidence of 0.23/105. The peak period was from May to July, accounting for 52.60%. There were 309 males and 269 females, with a male-to-female ratio of 1.15∶1. The cases were mainly aged 50-<80 years, farmers, and in rural areas, accounting for 82.53%, 77.34%, and 75.43%, respectively. Taizhou City and Shaoxing City reported more SFTS cases, while Shaoxing City and Zhoushan City had higher annual average incidences of SFTS. The Bayesian spatio-temporal interaction model showed good goodness of fit. The results showed that mean temperature (RR=1.626, 95%CI: 1.111-2.378) and mean wind speed (RR=1.814, 95%CI: 1.321-2.492) were positively correlated with SFTS risk, while altitude (RR=0.432, 95%CI: 0.230-0.829) and population density (RR=0.443, 95%CI: 0.207-0.964) were negatively correlated with SFTS risk.
Conclusions
SFTS in Zhejiang Province peaks from May to July. Middle-aged and elderly people and farmers are high-risk populations. Taizhou City, Shaoxing City, and Zhoushan City are high-incidence areas. Mean temperature, mean wind speed, altitude, and population density can all affect the risk of SFTS incidence.
4.Proteomic Analysis of Danlou Tablet in Improving Platelet Function for Treating Coronary Heart Disease with Phlegm-stasis Intermingling Syndrome in Minipigs
Ziyan WANG ; Ying LI ; Aoao WANG ; Hongxu MENG ; Yue SHI ; Yanlei MA ; Guoyuan ZHANG ; Lei LI ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):41-53
ObjectiveThis paper aims to observe the role of Danlou tablet in treating coronary heart disease (CHD) with phlegm-stasis intermingling syndrome in minipigs by improving platelet function and explore the potential pharmacological mechanism of Danlou tablet in regulating platelet function by using proteomics technology. MethodsThirty Bama minipigs were randomly divided into a normal control group (6 pigs) and a high-fat diet group (24 pigs). After 2 weeks of high-fat diet feeding, the high-fat diet group was randomly subdivided into a model group, an atorvastatin group (1 mg·kg-1), and Danlou tablet groups (0.6 g·kg-1 and 0.3 g·kg-1). All groups continued to receive a high-fat diet for 8 weeks after the procedure. The normal control group was given a regular diet, underwent only coronary angiography, and did not receive an interventional injury procedure. The model group and each administration group were fed a high-fat diet. Two weeks later, they underwent a coronary angiography injury procedure. After the procedure, drugs were mixed into the feed every morning for 8 consecutive weeks, with the minipigs maintained on a continuous high-fat diet during this period. Quantitative proteomics technology was further used to study platelet proteins, and differential proteins were obtained by screening. Bioinformatics analysis was performed to analyze key regulatory proteins and biological pathways involved in the therapeutic effect of Danlou tablet on CHD with phlegm-stasis intermingling syndrome. ResultsCompared with the normal control group, the model group showed a significant increase in total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) of minipigs' serum (P<0.01), a significant shortening in prothrombin time of (PT) (P<0.01), a coagulation function index, and an increase in whole blood viscosity (P<0.01) and platelet aggregation rate (P<0.01). Moreover, the platelet morphology was altered, and the contents of endothelin-1 (ET-1) and nitric oxide (NO) were significantly increased (P<0.01). Hemodynamic parameters were obviously abnormal, including significantly decreased systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), and left ventricular maximal positive dp/dt (LV+dp/dtmax) (P<0.01). Left ventricular maximal negative dp/dt (LV-dp/dtmax) was significantly increased (P<0.01). Besides, there were myocardial cell hypertrophy, obvious edematous degeneration, massive interstitial inflammatory cell infiltration, high degree of fibrosis, and coronary endothelial atherosclerosis. TC and TG levels in minipigs' serum were significantly reduced in Danlou tablet groups with 0.6 g·kg-1 and 0.3 g·kg-1 (P<0.05, P<0.01), compared with those in the model group. LDL-C was decreased in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). The whole blood viscosity under low and high shear conditions was significantly reduced in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). In groups with all doses of Danlou tablet, maximum aggregation rate (MAR) and average aggregation rate (AAR) were significantly decreased (P<0.05, P<0.01), and platelets' morphological changes such as pseudopodia extension were reduced. ET-1 levels in the serum were significantly reduced. In the Danlou tablet group with 0.6 g·kg-1, NO level in the serum was reduced (P<0.05). In groups with all doses of Danlou tablet, DBP and MAP were significantly increased (P<0.05). In the Danlou tablet group with 0.6 g·kg-1, LVSP and LV+dp/dtmax were significantly increased (P<0.05, P<0.01), and LV-dp/dtmax was significantly decreased (P<0.05). In groups with all doses of Danlou tablet, edematous degeneration in myocardial tissue was milder, and coronary artery lesion degree was significantly alleviated. Compared with the normal control group, there were 94 differentially expressed proteins in the model group, including 81 up-regulated and 13 down-regulated proteins. Compared with the model group, the Danlou tablet group with 0.6 g·kg-1 showed 174 differentially expressed proteins, including 100 up-regulated and 74 down-regulated proteins. A total of 30 proteins were reversed after Danlou tablet intervention. Bioinformatics analysis revealed that its pharmacological mechanism may exert anti-platelet activation, aggregation, and adhesion effects through biological pathways such as regulation of actin cytoskeleton, platelet activation pathway, Fcγ receptor-mediated phagocytosis, as well as proteins such as growth factor receptor-bound protein 2 (GRB2), Ras-related C3 botulinum toxin substrate 2 (RAC2), RAC1, and heat shock protein 90 alpha family class A member 1 (HSP90AA1). ConclusionDanlou tablet can effectively reduce platelet activation and aggregation, exerting a good therapeutic effect on CHD with phlegm-stasis intermingling syndrome in minipigs. Its pharmacological mechanism may involve regulating biological pathways such as actin cytoskeleton and platelet activation pathway, as well as proteins like GRB2, RAC2, RAC1, and HSP90AA1, thereby exerting a pharmacological effect in anti-platelet activation, aggregation, and adhesion.
5.Effect of lower extremity exoskeleton robots on balance and walking function of patients with post-stroke cerebellar ataxia
Yuan YUE ; Tong ZHANG ; Yuanmin LIU ; Ya'nan WANG
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):23-29
ObjectiveTo investigate the effect of lower extremity exoskeleton robots on balance and walking function of patients with post-stroke cerebellar ataxia. MethodsA total of 60 patients with post-stroke cerebellar ataxia in Beijing Bo'ai Hospital from October, 2022 to October, 2024 were selected, and randomly divided into control group (n = 30) and exoskeleton group (n = 30) randomly. Both groups were given conventional exercise training, including trunk control training, rotation axis training and Frenkel training; the exoskeleton group received additional training with lower limb exoskeleton robots, for four weeks. Before and after treatment, the Gait Watch three-dimensional gait analyzer and the Holden Functional Ambulation Classification (HFAC) were used to evaluate the walking spatiotemporal parameters such as walking speed, walking frequency and step length deviation, as well as the walking ability. Berg Balance Scale (BBS) and the International Cooperative Ataxia Rating Scale (ICARS) were used to access the balance and ataxia functions, respectively. ResultsAfter treatment, the walking speed, walking frequency and step length deviation of both groups improved (|t| > 19.676, P < 0.001), the BBS score improved (|t| > 29.032, P < 0.001), and the ICARS scores decreased (t > 33.192, P < 0.001) in both groups, and they were better in the exoskeleton group than in the control group (|t| > 2.284, P < 0.05). There was no significant difference in the improvement rate of HFAC between two groups (P > 0.05). ConclusionLower extremity exoskeleton robots can effectively improve the balance and walking function of patients with post-stroke cerebellar ataxia.
6.Research progress on the mechanisms of traditional Chinese medicine in treating functional constipation based on the gut microbiota-bile acid axis
Xiangrui KONG ; Qimeng ZHANG ; Yue ZOU ; Yong LIANG ; Yu SHI ; Yang ZHANG ; Hongxi ZHANG
China Pharmacy 2026;37(2):244-249
Functional constipation (FC) is a common functional disorder of the intestines, mainly characterized by reduced bowel movement frequency, difficulty in defecation, a sensation of incomplete evacuation, and hard stools, which severely affect patients’ quality of life. Research indicates that the pathogenesis of FC is closely related to gut microbiota dysbiosis and abnormal bile acid secretion. Bile acids, as endogenous natural laxatives, promote bowel movements by enhancing colonic secretion and regulating intestinal motility; meanwhile, gut microbiota influence colonic transit function by regulating the enteric nervous system, immune system, and their metabolic products. Based on an overview of the relationship between gut microbiota and bile acid metabolism, this article systematically reviews the current research status on the mechanisms of traditional Chinese medicine (TCM) in treating FC by regulating the balance of the gut microbiota-bile acid axis. It is found that single Chinese medicinal herbs (such as Atractylodes macrocephala), isolated compounds (such as Platycodon grandiflorum polysaccharides), herbal formulas (such as Shanger huang pill), acupuncture, and moxibustion can up-regulate the abundance of beneficial bacteria, reshape the microbial structure, correct bile acid metabolism, and activate the Takeda G-protein receptor 5/farnesoid X receptor pathway to treat FC.
7.Application of Aromatic Inhalation Therapy in Preventing Respiratory Infectious Diseases Based on the Theory of "Aromatics Acting on the Spleen"
Xinxin WU ; Yue ZHANG ; Xiaolei LI ; Haoyue LI ; Fang ZHANG ; Nanjiang YU ; ZHAOJING
Journal of Traditional Chinese Medicine 2025;66(4):432-436
Aromatic inhalation therapy is a key traditional Chinese medicine (TCM) approach for preventing respiratory infectious diseases. Its foundational theory, "aromatics acting on the spleen", is deeply rooted in TCM principles and supported by modern medical research. The theory posits that the aromatic properties of medicinals primarily act on the spleen, and the aromatic inhalation therapy achieved its protective effects by modulation of the spleen and spleen channel to enhance the regulation of wei qi, striae and interstices. In TCM, the spleen is considered the mother of the lungs, with the function of nurturing lung; it is also seen as the source of wei qi, responsible for external defense; and the root of healthy qi, forming the foundation of acquired (postnatal) constitution. Thus, preventive strategies for respiratory infectious diseases focus on strengthening the spleen. From a modern medical perspective, the spleen's role in regulating lung immune responses, the shared immune functions of the respiratory and gastrointestinal mucosa, and the spleen's overall immune modulation provide scientific evidence for using aromatic inhalation therapy to prevent respiratory infections. Additionally, aromatic inhalation therapy offers several advantages, including direct action, rapid onset, minimal side effects, controllable risks, convenience, and ease of dissemination, making it a practical and effective preventive measure for respiratory infectious diseases.
8.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
9.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
10.Predictive value of bladder deformation index for upper urinary tract damage in neurogenic bladder patients
Ran CHANG ; Huafang JING ; Yi GAO ; Siyu ZHANG ; Yue WANG ; Juan WU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(2):231-234
ObjectiveTo assess the predictive value of the bladder deformation index (BDI) in determining upper urinary tract (UUT) damage among patients with neurogenic bladder (NB). MethodsClinical data of 132 NB patients admitted to Beijing Bo'ai Hospital from January, 2015 to December, 2018 were retrospectively analyzed. Patients were divided into UUT damage group and normal UUT group according to the presence or absence of hydronephrosis. The demographics, biochemical parameters and video-urodynamics (VUDS) findings were collected, and BDI was calculated. Receiver operating characteristic (ROC) curves were utilized to evaluate the predictive capability. ResultsThere were 54 patients in UUT damage group and 33 in normal UUT group. The course of disease, creatinine level and BDI were siginificantly different between two groups (P < 0.05), while the area under the curve were 0.686, 0.836 and 0.928, respectively. ConclusionCourse of disease, creatinine level and BDI are associated with UUT damage in NB patients, and BDI demonstrates the highest sensitivity and specificity, which may play a role in diagnosis of UUT damage.


Result Analysis
Print
Save
E-mail