1.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
2.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
3.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
4.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
5.Cartilage Protection and Anti-Inflammatory Effects of Fraxetin on Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis
Zhiwei LIU ; Ran YANG ; Hao LIAN ; Yu ZHANG ; Lilun JIN
Laboratory Animal and Comparative Medicine 2025;45(3):259-268
ObjectiveTo establish a rat model of osteoarthritis and study the anti-inflammatory effects and mechanisms of fraxetin. MethodsEighteen 8-week-old male SPF-grade SD rats were randomly divided into three groups: Rats in the blank group received a right articular cavity injection of 50 μL of normal saline for 1 week; the model and intervention groups were injected with monosodium iodoacetate (MIA) into the right joint cavity to induce osteoarthritis, while the intervention group subsequently received fraxetin (5 mg·kg-1·d-1) for 1 week. Four weeks after drug intervention, abdominal aortic blood was collected. The animals were then euthanized, and knee joint cartilage were collected. The cartilage samples were stained with hematoxylin-eosin, safranin O-fast green, and toluidine blue for histopathological examination and scoring using the Mankin and OARSI scoring systems. The trabecular bone volume/total volume (Tb.BV/TV), trabecular bone surface density/total volume (Tb.BS/TV), and trabecular number (Tb.N) of each group were compared and analyzed using a micro-CT scanning system. The expression levels of various inflammatory factors [tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)], and cartilage oligomeric matrix protein (COMP) were measured using enzyme-linked immunosorbent assay (ELISA). The expression levels of mitogen-activated protein kinase p38 (p38 MAPK), phosphorylation-p38 MAPK (p-p38 MAPK), c-Jun N-terminal kinase (JNK), and phosphorylation-JNK (p-JNK) were measured by western blotting. ResultsThe staining of cartilage sections of rat knee joints showed that the articular surface defects in the model group were severe, while the cartilage destruction in the intervention group was relatively reduced. Micro-CT results showed that Tb.BV/TV, Tb.BS/TV and Tb.N in the intervention group were significantly higher than those in the model group (P < 0.05); the Mankin score in the model group was significantly higher than that in the blank group (P < 0.05), the Mankin score in the intervention group was significantly lower than that in the model group (P < 0.05); while the OARSI score in the intervention group was significantly lower than that in the model group (P < 0.05). The results of the enzyme-linked immunosorbent assay showed that the serum levels of TNF-α, IL-1β, IL-6, and COMP in the model group were significantly higher than those in the blank group (all P < 0.05), while those in the intervention group were significantly lower than in the model group (P < 0.05). Western blot results showed that the expression levels of p-p38 MAPK and p-JNK in the knee cartilage tissue were significantly lower in the intervention group than in the model group (both P < 0.05), and significantly higher in the model group than in the blank group (both P < 0.05). ConclusionFraxetin may play a therapeutic role in a monosodium iodoacetate-induced rat model of osteoarthritis through the p38 MAPK pathway.
6.Cartilage Protection and Anti-Inflammatory Effects of Fraxetin on Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis
Zhiwei LIU ; Ran YANG ; Hao LIAN ; Yu ZHANG ; Lilun JIN
Laboratory Animal and Comparative Medicine 2025;45(3):259-268
ObjectiveTo establish a rat model of osteoarthritis and study the anti-inflammatory effects and mechanisms of fraxetin. MethodsEighteen 8-week-old male SPF-grade SD rats were randomly divided into three groups: Rats in the blank group received a right articular cavity injection of 50 μL of normal saline for 1 week; the model and intervention groups were injected with monosodium iodoacetate (MIA) into the right joint cavity to induce osteoarthritis, while the intervention group subsequently received fraxetin (5 mg·kg-1·d-1) for 1 week. Four weeks after drug intervention, abdominal aortic blood was collected. The animals were then euthanized, and knee joint cartilage were collected. The cartilage samples were stained with hematoxylin-eosin, safranin O-fast green, and toluidine blue for histopathological examination and scoring using the Mankin and OARSI scoring systems. The trabecular bone volume/total volume (Tb.BV/TV), trabecular bone surface density/total volume (Tb.BS/TV), and trabecular number (Tb.N) of each group were compared and analyzed using a micro-CT scanning system. The expression levels of various inflammatory factors [tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)], and cartilage oligomeric matrix protein (COMP) were measured using enzyme-linked immunosorbent assay (ELISA). The expression levels of mitogen-activated protein kinase p38 (p38 MAPK), phosphorylation-p38 MAPK (p-p38 MAPK), c-Jun N-terminal kinase (JNK), and phosphorylation-JNK (p-JNK) were measured by western blotting. ResultsThe staining of cartilage sections of rat knee joints showed that the articular surface defects in the model group were severe, while the cartilage destruction in the intervention group was relatively reduced. Micro-CT results showed that Tb.BV/TV, Tb.BS/TV and Tb.N in the intervention group were significantly higher than those in the model group (P < 0.05); the Mankin score in the model group was significantly higher than that in the blank group (P < 0.05), the Mankin score in the intervention group was significantly lower than that in the model group (P < 0.05); while the OARSI score in the intervention group was significantly lower than that in the model group (P < 0.05). The results of the enzyme-linked immunosorbent assay showed that the serum levels of TNF-α, IL-1β, IL-6, and COMP in the model group were significantly higher than those in the blank group (all P < 0.05), while those in the intervention group were significantly lower than in the model group (P < 0.05). Western blot results showed that the expression levels of p-p38 MAPK and p-JNK in the knee cartilage tissue were significantly lower in the intervention group than in the model group (both P < 0.05), and significantly higher in the model group than in the blank group (both P < 0.05). ConclusionFraxetin may play a therapeutic role in a monosodium iodoacetate-induced rat model of osteoarthritis through the p38 MAPK pathway.
7.Avatrombopag for platelet engraftment after allogeneic hematopoietic stem cell transplantation in children: a retrospective clinical study.
Xin WANG ; Yuan-Yuan REN ; Xia CHEN ; Chao-Qian JIANG ; Ran-Ran ZHANG ; Xiao-Yan ZHANG ; Li-Peng LIU ; Yu-Mei CHEN ; Li ZHANG ; Yao ZOU ; Fang LIU ; Xiao-Juan CHEN ; Wen-Yu YANG ; Xiao-Fan ZHU ; Ye GUO
Chinese Journal of Contemporary Pediatrics 2025;27(10):1233-1239
OBJECTIVES:
To evaluate the efficacy and safety of avatrombopag in promoting platelet engraftment after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children, compared with recombinant human thrombopoietin (rhTPO).
METHODS:
A retrospective analysis was conducted on 53 pediatric patients who underwent allo-HSCT at the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences from April 2023 to August 2024. Based on medications used during the periengraftment period, patients were divided into two groups: the avatrombopag group (n=15) and the rhTPO group (n=38).
RESULTS:
At days 14, 30, and 60 post-transplant, platelet engraftment was achieved in 20% (3/15), 60% (9/15), and 93% (14/15) of patients in the avatrombopag group, and in 39% (15/38), 82% (31/38), and 97% (37/38) in the rhTPO group, respectively. There were no significant differences between the two groups in platelet engraftment rates at each time point, cumulative incidence of platelet engraftment, overall survival, and relapse-free survival (all P>0.05). Multivariable Cox proportional hazards analysis indicated that acute graft-versus-host disease was an independent risk factor for delayed platelet engraftment (P=0.043).
CONCLUSIONS
In children undergoing allo-HSCT, avatrombopag effectively promotes platelet engraftment, with efficacy and safety comparable to rhTPO, and represents a viable therapeutic option.
Humans
;
Retrospective Studies
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Male
;
Female
;
Child
;
Child, Preschool
;
Infant
;
Adolescent
;
Transplantation, Homologous
;
Blood Platelets/drug effects*
;
Thiazoles/therapeutic use*
;
Thrombopoietin/therapeutic use*
;
Thiophenes
9.Lcn2 secreted by macrophages through NLRP3 signaling pathway induced severe pneumonia.
Mingya LIU ; Feifei QI ; Jue WANG ; Fengdi LI ; Qi LV ; Ran DENG ; Xujian LIANG ; Shasha ZHOU ; Pin YU ; Yanfeng XU ; Yaqing ZHANG ; Yiwei YAN ; Ming LIU ; Shuyue LI ; Guocui MOU ; Linlin BAO
Protein & Cell 2025;16(2):148-155
10.Threshold-Effect Associations of Serum 25-hydroxyvitamin D on Bone Turnover Markers and GC rs2282679 Variants in Chinese Women of Childbearing Age.
Xiao Yun SHAN ; Yu Ting LI ; Xia Yu ZHAO ; Yi Chun HU ; Si Ran LI ; Hui di ZHANG ; Yang CAO ; Rui WANG ; Li Chen YANG
Biomedical and Environmental Sciences 2025;38(4):433-446
OBJECTIVE:
This study aimed to investigate possible serum 25-hydroxyvitamin D [25(OH)D] cutoffs for the associations between 25(OH)D and Bone turnover markers (BTMs), and how GC gene variation influences such cutoffs in Chinese women of childbearing age.
METHODS:
In total, 1,505 non-pregnant or non-lactating women (18-45 years) were recruited from the 2015 Chinese Adult Chronic Disease and Nutrition Surveillance. Serum 25(OH)D, osteocalcin (OC), procollagen type 1 N-terminal propeptide (P1NP), β-CrossLaps of type 1 collagen containing cross-linked C-telopeptide (β-CTX), and single nucleotide polymorphisms were determined. Locally weighted regression and smoothing scatterplot and segmented regression were performed to estimate the 25(OH)D thresholds.
RESULTS:
The median serum 25(OH)D was 16.63 (11.96-22.55) ng/mL and the prevalence of low serum 25(OH)D (< 12 ng/mL) was 25.2%. Women with the lowest 25(OH)D had the highest β-CTX. After adjustment for the confounders, 25(OH)D cutoffs for OC [14.04 (12.84-15.23) ng/mL], β-CTX [13.94 (12.49-15.39) ng/mL], and P1NP [13.87 (12.37-15.37) ng/mL] in the whole population, cutoffs for OC [12.30 (10.68-13.91) ng/mL], β-CTX [12.23 (10.22-14.23) ng/mL], and P1NP [11.85 (10.40-13.31) ng/mL] in women with the GC rs2282679 G allele, and cutoffs for OC [12.75 (11.81-13.68) ng/mL], β-CTX [13.05 (11.78-14.32) ng/mL], and P1NP [12.81 (11.57-14.06) ng/mL] in women with the GC rs2282679 T allele, were observed. Below these cutoffs, BTMs were negatively associated with 25(OH)D, while above these cutoffs, BTMs plateaued.
CONCLUSION
In Chinese women of childbearing age, there were thresholds effect of serum 25(OH)D concentrations on BTMs. The results indicated that serum 25(OH)D concentrations < 13.87 ng/mL in this population had adverse influences on maintaining bone remodeling. BTMs were suppressed at a relatively lower serum 25(OH)D in women with the GC rs2282679 G allele compared with those with the T allele.
Humans
;
Female
;
Vitamin D/blood*
;
Adult
;
Middle Aged
;
Polymorphism, Single Nucleotide
;
Adolescent
;
Young Adult
;
China
;
Biomarkers/blood*
;
Bone Remodeling/genetics*
;
Vitamin D-Binding Protein/genetics*
;
Procollagen/blood*
;
Osteocalcin/blood*
;
Peptide Fragments/blood*
;
East Asian People

Result Analysis
Print
Save
E-mail