1.Interpretation of 2024 EACTS guidelines on perioperative medication in adult cardiac surgery
Yunpeng ZHU ; Heng ZHANG ; Mengyuan HAN ; Jiawei HAN ; Zhe ZHENG ; Qiang ZHAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(09):1216-1224
The European Association for Cardio-Thoracic Surgery (EACTS) has recently updated and published the "2024 EACTS guidelines on perioperative medication in adult cardiac surgery". Based on the latest evidence, the guidelines have been updated in multiple aspects including underlying disease management, antithrombotic medication, arrhythmia treatment and other supportive care, etc. This paper aims to summarize and interpret the guidelines, in order to promote clinicians’ understanding and optimize perioperative medical treatment in adult cardiac surgery.
2.Pathogenesis of Vertigo and Therapeutic Effect of Xiao Chaihutang Based on Theory of Mutual Interference between Clear Qi and Turbid Qi in Huangdi's Internal Classic
Lanyun SHI ; Zhiyong LIU ; Zhen WANG ; Meina ZHAO ; Mengyuan ZHANG ; Chengsi DUAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):248-256
As a common medical condition, vertigo can be induced by multiple diseases in the modern medical system. Its incidence rate shows an upward trend with the increase in age. According to the theory of mutual interference between clear Qi and turbid Qi in Huangdi's Internal Classic (Huang Di Nei Jing), this paper systematically analyzes the pathogenesis of vertigo and explores the mechanism and clinical application value of Xiao Chaihutang in the treatment of vertigo. It is believed that the mutual inference between clear Qi and turbid Qi leads to the failure of clear Yang to ascend, resulting in the lack of nourishment for the brain and the inability of turbid Yin to descend, which disturbs the clear orifices, thus causing vertigo. The core pathogenesis lies in the dysfunction of Qi movement, the disorder of body fluid distribution, and the imbalance between Yin and Yang. The compatibility of Xiao Chaihutang takes into account the methods of pungent medicinal materials opening and bitter medicinal materials descending, tonifying deficiency and purging excess, and regulating Qi movement. This prescription can regulate the pathological state of the mutual interference between clear Qi and turbid Qi from three aspects: regulating Qi movement throughout the body, harmonizing the distribution of body fluids, and coordinating Yin and Yang as well as the interior and exterior, thus preventing and treating vertigo. Modern research findings show that Xiao Chaihutang can improve hemodynamics to promote cerebral blood circulation and has anti-inflammation, immunomodulatory, and anti-tumor functions, which correspond to the therapeutic effects of Xiao Chaihutang under the theory of mutual interference between clear Qi and turbid Qi. The decoction exerts therapeutic effects on vertigo caused by hypertension, stroke, otitis media, Meniere’s disease, and brain tumor as well as benign paroxysmal positional vertigo. Further exploration of the theoretical connotation of mutual inference between clear Qi and turbid Qi and analysis of the pathogenesis of vertigo and the therapeutic effect of Xiao Chaihutang can better interpret the internal correlations among the three, thus providing new ideas for the syndrome differentiation and treatment of vertigo.
3.Epigenetic factors associated with peri-implantitis: a review.
Qianhui LI ; Hongye LU ; Mengyuan ZHANG ; Yuting YE ; Qianming CHEN ; Ping SUN
Journal of Zhejiang University. Science. B 2025;26(7):657-674
Peri-implant diseases are characterized by the resorption of hard tissue and the inflammation of soft tissue. Epigenetics refers to alterations in the expression of genes that are not encoded in the DNA sequence, influencing diverse physiological activities, including immune response, inflammation, and bone metabolism. Epigenetic modifications can lead to tissue-specific gene expression variations among individuals and may initiate or exacerbate inflammation and disease predisposition. However, the impact of these factors on peri-implantitis remains inconclusive. To address this gap, we conducted a comprehensive review to investigate the associations between epigenetic mechanisms and peri-implantitis, specifically focusing on DNA methylation and microRNAs (miRNAs or miRs). We searched for relevant literature on PubMed, Web of Science, Scopus, and Google Scholar with keywords including "epigenetics," "peri-implantitis," "DNA methylation," and "microRNA." DNA methylation and miRNAs present a dynamic epigenetic mechanism operating around implants. Epigenetic modifications of genes related to inflammation and osteogenesis provide a new perspective for understanding how local and environmental factors influence the pathogenesis of peri-implantitis. In addition, we assessed the potential application of DNA methylation and miRNAs in the prevention, diagnosis, and treatment of peri-implantitis, aiming to provide a foundation for future studies to explore potential therapeutic targets and develop more effective management strategies for this condition. These findings also have broader implications for understanding the pathogenesis of other inflammation-related oral diseases like periodontitis.
Peri-Implantitis/genetics*
;
Humans
;
Epigenesis, Genetic
;
DNA Methylation
;
MicroRNAs/genetics*
4.ARID1A IDR targets EWS-FLI1 condensates and finetunes chromatin remodeling.
Jingdong XUE ; Siang LV ; Ming YU ; Yixuan PAN ; Ningzhe LI ; Xiang XU ; Qi ZHANG ; Mengyuan PENG ; Fang LIU ; Xuxu SUN ; Yimin LAO ; Yanhua YAO ; Juan SONG ; Jun WU ; Bing LI
Protein & Cell 2025;16(1):64-71
5.Polyphyllin VII promotes hepatic stellate cell ferroptosis via the HIC1/CX3CL1/GPX4 axis.
Feng JIANG ; Xinmiao LI ; Mengyuan LI ; Weizhi ZHANG ; Yifei LI ; Lifan LIN ; Lufan HE ; Jianjian ZHENG
Journal of Pharmaceutical Analysis 2025;15(5):101147-101147
Ferroptosis has been shown to mediate the development of fibrosis. Polyphyllin VII (PP7), a bioactive component of Paris polyphylla, exhibits potent anti-inflammatory activity and can significantly alleviate liver fibrosis. In this study, treatment with PP7 significantly inhibited the proliferation and activation of hepatic stellate cells (HSCs), which could be suppressed by a ferroptosis inhibitor. In addition, it promoted HSC ferroptosis by suppressing glutathione (GSH) peroxidase 4 (GPX4) and enhanced the expression of CX3C chemokine ligand 1 (CX3CL1). Depletion of CX3CL1 attenuated the effects of PP7 on the activation and ferroptosis of HSCs and the expression of GPX4. Notably, CX3CL1 directly interacted with GPX4, triggering HSC ferroptosis. The transcription factor hypermethylated in cancer 1 (Hic1), which binds to the Cx3cl1 promoter, increased the expression of CX3CL1. Its absence resulted in downregulation of CX3CL1, suppressing the GPX4-dependent ferroptosis of PP7-treated HSCs and promoting their activation. HIC1 was found to directly interact with PP7 at the GLY164 site. Co-culture experiments showed that PP7-induced HSC ferroptosis attenuated macrophage recruitment by regulating inflammation-related genes. HSC-specific inhibition of HIC1 counteracted PP7-induced collagen depletion and HSC ferroptosis in vivo. These findings suggest that PP7 induces HSC ferroptosis through the HIC1/CX3CL1/GPX4 axis.
6.Pristimerin induces Noxa-dependent apoptosis by activating the FoxO3a pathway in esophageal squamous cell carcinoma.
Mengyuan FENG ; Anjie ZHANG ; Jingyi WU ; Xinran CHENG ; Qingyu YANG ; Yunlai GONG ; Xiaohui HU ; Wentao JI ; Xianjun YU ; Qun ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):585-592
Pristimerin, which is one of the compounds present in Celastraceae and Hippocrateaceae, has antitumor effects. However, its mechanism of action in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aims to investigate the efficacy and mechanism of pristimerin on ESCC in vitro and in vivo. The inhibitory effect of pristimerin on cell growth was assessed using trypan blue exclusion and colony formation assays. Cell apoptosis was evaluated by flow cytometry. Gene and protein expressions were analyzed through quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry. RNA sequencing (RNA-Seq) was employed to identify significantly differentially expressed genes (DEGs). Cell transfection and RNA interference assays were utilized to examine the role of key proteins in pristimerin?s effect. Xenograft models were established to evaluate the antitumor efficiency of pristimerin in vivo. Pristimerin inhibited cell growth and induced apoptosis in ESCC cells. Upregulation of Noxa was crucial for pristimerin-induced apoptosis. Pristimerin activated the Forkhead box O3a (FoxO3a) signaling pathway and triggered FoxO3a recruitment to the Noxa promoter, leading to Noxa transcription. Blocking FoxO3a reversed pristimerin-induced Noxa upregulation and cell apoptosis. Pristimerin treatment suppressed xenograft tumors in nude mice, but these effects were largely negated in Noxa-KO tumors. Furthermore, the chemosensitization effects of pristimerin in vitro and in vivo were mediated by Noxa. This study demonstrates that pristimerin exerts an antitumor effect on ESCC by inducing AKT/FoxO3a-mediated Noxa upregulation. These findings suggest that pristimerin may serve as a potent anticancer agent for ESCC treatment.
Forkhead Box Protein O3/genetics*
;
Humans
;
Apoptosis/drug effects*
;
Esophageal Squamous Cell Carcinoma/physiopathology*
;
Esophageal Neoplasms/physiopathology*
;
Pentacyclic Triterpenes
;
Animals
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Mice
;
Signal Transduction/drug effects*
;
Mice, Nude
;
Cell Proliferation/drug effects*
;
Triterpenes/pharmacology*
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
;
Male
;
Gene Expression Regulation, Neoplastic/drug effects*
7.Effect of heterologous expression of Scenedesmus quadricauda malic enzyme gene SqME on photosynthetic carbon fixation and lipid accumulation in tobacco leaves.
Yizhen LIU ; Mengyuan LI ; Zhanqian LI ; Yushuang GUO ; Jingfang JI ; Wenchao DENG ; Ze YANG ; Yan SUN ; Chunhui ZHANG ; Jin'ai XUE ; Runzhi LI ; Chunli JI
Chinese Journal of Biotechnology 2025;41(7):2829-2842
Microalgae possess high photosynthetic efficiency, robust adaptability, and substantial biomass, serving as excellent biological resources for large-scale cultivation. Malic enzyme (ME), a ubiquitous metabolic enzyme in living organisms, catalyzes the decarboxylation of malate to produce pyruvate, CO2, and NAD(P)H, playing a role in multiple metabolic pathways including energy metabolism, photosynthesis, respiration, and biosynthesis. In this study, we identified the Scenedesmus quadricauda malic enzyme gene (SqME) and its biological functions, aiming to provide excellent target genes for the genetic improvement of higher plants. Based on the RNA-seq data from S. quadricauda under the biofilm cultivation mode with high CO2 and light energy transfer efficiency and small water use, a highly expressed gene (SqME) functionally annotated as ME was cloned. The physicochemical properties of the SqME-encoded protein were systematically analyzed by bioinformatics tools. The subcellular localization of SqME was determined via transient transformation in Nicotiana benthamiana leaves. The biological functions of SqME were identified via genetic transformation in Nicotiana tabacum, and the potential of SqME in the genetic improvement of higher plants was evaluated. The ORF of SqME was 1 770 bp, encoding 590 amino acid residues, and the encoded protein was located in chloroplasts. SqME was a NADP-ME, with the typical structural characteristics of ME. The ME activity in the transgenic N. tabacum plant was 1.8 folds of that in the wild-type control. Heterologous expression of SqME increased the content of chlorophyll a, chlorophyll b, and total chlorophyll by 20.9%, 26.9%, and 25.2%, respectively, compared with the control. The transgenic tobacco leaves showed an increase of 54.0% in the fluorescence parameter NPQ and a decrease of 30.1% in Fo compared with the control. Moreover, the biomass, total lipids, and soluble sugars in the transgenic tobacco leaves enhanced by 20.5%, 25.7%, and 9.5%, respectively. On the contrary, the starch and protein content in the transgenic tobacco leaves decreased by 22.4% and 12.2%, respectively. Collectively, the SqME-encoded protein exhibited a strong enzymatic activity. Heterologous expressing of SqME could significantly enhance photosynthetic protection, photosynthesis, and biomass accumulation in the host. Additionally, SqME can facilitate carbon metabolism remodeling in the host, driving more carbon flux towards lipid synthesis. Therefore, SqME can be applied in the genetic improvement of higher plants for enhancing photosynthetic carbon fixation and lipid accumulation. These findings provide scientific references for mining of functional genes from S. quadricauda and application of these genes in the genetic engineering of higher plants.
Nicotiana/genetics*
;
Photosynthesis/physiology*
;
Malate Dehydrogenase/biosynthesis*
;
Plant Leaves/genetics*
;
Scenedesmus/enzymology*
;
Carbon Cycle/genetics*
;
Lipid Metabolism/genetics*
;
Plants, Genetically Modified/metabolism*
8.Smart bandage for chronic wound management
Mengyuan ZHANG ; Zhaojian WANG ; Jiuzuo HUANG ; Nanze YU ; Xiao LONG
Chinese Journal of Plastic Surgery 2024;40(10):1041-1045
The management of chronic wounds presents significant challenges, characterized by a low rate of healing and substantial impairment of patients’ quality of life, while also exerting a considerable strain on healthcare resources. Wound healing is a multifactorial and dynamic process, necessitating close monitoring of wound changes and timely, appropriate interventions. Smart bandage/dressing, an innovative approach born from interdisciplinary research, offers a new generation of wound care. It enables dynamic quantitative monitoring of wound conditions, facilitates transdermal drug release and physical mode therapeutics, and adjusts interventions in real time based on monitoring outcomes. In comparison to traditional wound dressings, smart bandages exhibit attributes such as real-time responsiveness, precision, and convenience. They not only simplify wound management but also enhance patient comfort and compliance, showcasing potential as a safe and effective new treatment modality. Smart bandages hold promise for elevating the efficiency of managing chronic wounds, reducing morbidity rates, alleviating the burden of disease, and ultimately improving patients’ quality of life. This paper summarized the recent research progress of smart bandages and provide insights into novel wound care strategies.
9.Recent advances in objective evaluation of the aging jawline
Mengyuan ZHANG ; Nanze YU ; Xiao LONG
Chinese Journal of Plastic Surgery 2024;40(10):1041-1046
Improvement of the jawline contour is a key focus in lower face and neck rejuvenation treatments. Achieving a well-defined, smooth jawline is a shared goal for both patients and plastic surgeons. This article reviews recent research on age-related changes of the jawline and evaluation method, offering valuable references for jawline rejuvenation treatments.The jawline's unique anatomical position, coupled with age-related changes, involves dynamic alterations in bone, soft tissue, and skin across multiple layers, making rejuvenation of this area a complex and challenging task. In recent years, advances in imaging technologies such as two-dimensional photography, three-dimensional stereophotogrammetry, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and micro-CT have expanded the understanding of jawline anatomy and provided precise tools for analysis and evaluation.
10.Recent advances in objective evaluation of the aging jawline
Mengyuan ZHANG ; Nanze YU ; Xiao LONG
Chinese Journal of Plastic Surgery 2024;40(11):1249-1254
Improvement of the jawline contour is a critical focus in lower face and neck rejuvenation treatments. Achieving a well-defined, smooth jawline is a shared goal between patients and plastic surgeons. This article reviewed recent research on age-related changes of the jawline and evaluation method, offering valuable references for jawline rejuvenation treatments.The jawline’s unique anatomical position, coupled with age-related changes, involves dynamic alterations in bone, soft tissue, and skin across multiple layers, making rejuvenation of this area a complex and challenging task. In recent years, advances in imaging technologies such as two-dimensional photography, three-dimensional stereophotogrammetry, computed tomography, magnetic resonance imaging, ultrasound, and micro-CT have expanded the understanding of jawline anatomy and provided precise tools for analysis and evaluation.

Result Analysis
Print
Save
E-mail