1.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
2.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
3.Effect of Yiqi Wenyang Huoxue Lishui Components on Cardiac Function and Mitochondrial Energy Metabolism in CHF Rats
Hui GAO ; Zeqi YANG ; Xin LIU ; Fan GAO ; Yangyang HAN ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):27-36
ObjectiveTo investigate the effects of Yiqi Wenyang Huoxue Lishui components on the cardiac function and mitochondrial energy metabolism in the rat model of chronic heart failure (CHF) and explore the underlying mechanism. MethodsThe rat model of CHF was prepared by transverse aortic constriction (TAC). Eight of the 50 SD rats were randomly selected as the sham group, and the remaining 42 underwent TAC surgery. The 24 SD rats successfully modeled were randomized into model, trimetazidine (6.3 mg·kg-1), and Yiqi Wenyang Huoxue Lishui components (60 mg·kg-1 total saponins of Astragali Radix, 10 mg·kg-1 total phenolic acids of Salviae Miltiorrhizae Radix et Rhizoma, 190 mg·kg-1 aqueous extract of Lepidii Semen, and 100 mg·kg-1 cinnamaldehyde) groups. The rats were administrated with corresponding agents by gavage, and those in the sham and model groups were administrated with the same amount of normal saline at a dose of 10 mL·kg-1 for 8 weeks. Echocardiography was used to examine the cardiac function in rats. Enzyme-linked immunosorbent assay was employed to determine the serum levels of N-terminal pro-B-type natriuretic peptide (NT-ProBNP), hypersensitive troponin(cTnI), creatine kinase (CK), lactate dehydrogenase (LD), free fatty acids (FFA), superoxide dismutase (SOD), and malondialdehyde (MDA). The colorimetric assay was employed to measure the levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in the myocardial tissue. The pathological changes in the myocardial tissue were observed by hematoxylin-eosin staining and Masson staining. The Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities in the myocardial tissue were determined by the colorimetric assay. The ultrastructural changes of myocardial mitochondria were observed by transmission electron microscopy. Western blot was employed to determine the protein levels of ATP synthase subunit delta (ATP5D), glucose transporter 4 (GLUT4), and carnitine palmitoyltransferase-1 (CPT-1). The mitochondrial complex assay kits were used to determine the activities of mitochondrial complexes Ⅰ, Ⅱ, Ⅲ, and Ⅳ. ResultsCompared with the sham group, the model group showed a loosening arrangement of cardiac fibers, fracture and necrosis of partial cardiac fibers, inflammatory cells in necrotic areas, massive blue fibrotic tissue in the myocardial interstitium, increased collagen fiber area and myocardial fibrosis, destroyed mitochondria, myofibril disarrangement, sparse myofilaments, and fractured and reduced cristae. In addition, the rats in the model group showed declined ejection fraction (EF) and fractional shortening (FS), risen left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs), elevated levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, lowered level of SOD, down-regulated protein levels of GLUT4 and CPT-1, decreased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and declined levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). Compared with the model group, the Yiqi Wenyang Huoxue Lishui components and trimetazidine groups showed alleviated pathological damage of the mitochondria and mycardial tissue, risen EF and FS, declined LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs, lowered levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, elevated level of SOD, up-regulated protein levels of GLUT4 and CPT-1, increased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and elevated levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). ConclusionYiqi Wenyang Huoxue Lishui components can improve the cardiac function, reduce myocardial injury, regulate glucose and lipid metabolism, optimize the utilization of substrates, and alleviate the damage of mitochondrial structure and function, thus improving the energy metabolism of the myocardium in the rat model of CHF.
4.Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m6A modification of calsequestrin 2 in diabetic cardiomyopathy.
Xiaohan LI ; Ling LIU ; Han LOU ; Xinxin DONG ; Shengxin HAO ; Zeqi SUN ; Zijia DOU ; Huimin LI ; Wenjie ZHAO ; Xiuxiu SUN ; Xin LIU ; Yong ZHANG ; Baofeng YANG
Frontiers of Medicine 2025;19(2):329-346
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca2+ overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM. Our results revealed the remarkably upregulation of Trdn-as in the hearts of the DCM mice and cardiomyocytes treated with high glucose (HG). Knocking down Trdn-as in cardiac tissues significantly improved cardiac dysfunction and remodeling in the DCM mice. Conversely, Trdn-as overexpression resulted in cardiac damage resembling that observed in the DCM mice. At the cellular level, Trdn-as induced Ca2+ overload in the SR and mitochondria, leading to mitochondrial dysfunction. RNA-seq and bioinformatics analyses identified calsequestrin 2 (Casq2), a primary calcium-binding protein in the junctional SR, as a potential target of Trdn-as. Further investigations revealed that Trdn-as facilitated the recruitment of METTL14 to the Casq2 mRNA, thereby enhancing the m6A modification of Casq2. This modification increased the stability of Casq2 mRNA and subsequently led to increased protein expression. When Casq2 was knocked down, the promoting effects of Trdn-as on Ca2+ overload and mitochondrial damage were mitigated. These findings provide valuable insights into the pathogenesis of DCM and suggest Trdn-as as a potential therapeutic target for this condition.
Animals
;
Diabetic Cardiomyopathies/pathology*
;
RNA, Long Noncoding/genetics*
;
Myocytes, Cardiac/metabolism*
;
Mice
;
Calsequestrin/genetics*
;
Calcium/metabolism*
;
Male
;
Sarcoplasmic Reticulum/metabolism*
;
Methyltransferases/metabolism*
;
Mice, Inbred C57BL
;
Mitochondria, Heart/metabolism*
;
Disease Models, Animal
;
Mitochondria/metabolism*
5.The mechanism of the effects of bisphenol A and high-fat diet on non-alcoholic fatty liver disease in mice
Yunfeng LIN ; Jiaoxiang ZHANG ; Zhilin ZHANG ; Zeqi LU ; Ruijuan YAO ; Lanlan XU ; Congzheng QI ; Lili LIU ; Qiansheng HU ; Wei ZHU
China Occupational Medicine 2025;52(4):376-385
Objective To explore the effects of combined exposure to bisphenol A (BPA) and high-fat diet on liver lipid metabolism and hepatocyte senescence in mice, and to elucidate the potential mechanisms of the onset and development of non-alcoholic fatty liver disease (NAFLD). Methods Specific pathogen free C57BL/6J mice were randomly divided into six groups, with 10 mice with equal numbers of each sex in each group. The mice in the control group and the simple BPA group were fed with regular diet, while others four groups of mice were fed with high-fat diet. At the same time, the mice in the simple BPA group were intragastric administered with BPA at a dose of 50 μg/kg body weight, while the mice in the low-, medium- and high-dose BPA+high-fat groups were intragastric administered with BPA at doses of 5, 50 and 500 μg/kg body weight respectively. The mice in the control group and the high-fat group were intragastric administered with the same volume of corn oil once per day for 90 consecutive days. Liver tissues were subjected to hematoxylin-eosin (HE) and Oil Red O staining. Liver coefficients and lipid-stained area ratios were calculated. Serum level of total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, and the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined using an automatic biochemical analyzer. The hepatic tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 levels were quantified by enzyme-linked immunosorbent assay. The relative expression of cholesterol regulatory element binding protein 1 (SREBP1), CCAAT enhancer binding protein α, P16, and phosphorylated histone H2AX (γ-H2AX) in liver tissues was detected using Western blotting. The interaction effect of the combined exposure to BPA and high-fat diet was observed based on the result of mice in the control group, the simple high-fat group, the simple BPA group, and the medium-dose BPA group+high-fat group (the combined exposure group) using a 2×2 factorial design. The results of mice in the simple high-fat group and the low-, medium-, and high-dose BPA+high-fat groups were used to observe the effect of BPA exposure dose under high-fat diet conditions. Results i) The interactive effect of combined exposure to BPA and high fat. The HE and Oil Red O staining results indicated that the combined exposure to BPA and high-fat diet successfully established NAFLD in mice. The interactive effect of combined exposure to BPA and high-fat diet on serum ALT activity and the relative expression of P16 in the liver tissue of female mice, as well as the serum ALT and AST activities and the relative expression of SREBP1 in the liver tissue of male mice was significant (all P<0.05). Specifically, the serum ALT activity of male mice in the combined exposure group was higher than that in the simple high-fat group (P<0.05), while the ALT activity in the serum of female mice in the combined exposure group was lower than that in the simple BPA group (P<0.05). The relative expression of SREBP1 protein in the liver tissue of male mice in the combined exposure group was higher than that in the control group, the simple high-fat group, and the simple BPA group (all P<0.05). For the other indicators, there were no significant differences in the interactive effect of combined exposure to BPA and high-fat diet (all P>0.05). ii) Dose effects of BPA exposure. The HE and Oil Red O staining result showed that the degree of vacuolar steatosis in the liver of female and male mice of medium- and high-dose BPA + high-fat groups was aggravated, and the range of inflammatory cell infiltration was expanded when compared with same-sex mice in the simple high-fat group. The serum ALT activity and the fat stained area ratio, as well as the relative expression of P16 in liver tissue of female mice in high-dose BPA + high-fat group increased (all P<0.05), while the level of IL-10 in liver tissue decreased (P<0.05), compared with the female mice in simple high-fat group. The serum ALT activity, the TNF-α level in liver tissue, and the relative expression of SREBP1, P16 and γ-H2AX proteins in liver tissue of male mice in high-dose BPA + high-fat group increased (all P<0.05), while the IL-6 level in liver tissue decreased (P<0.05), compared with the male mice in simple high-fat group. For the female or male mice in the low- and medium-dose BPA + high-fat groups, only some of the above indicators showed significant changes (all P<0.05). Conclusion The combined exposure to BPA and high-fat diet has a synergistic effect on the onset and development of NAFLD. The mechanism may be related to inducing cellular senescence and modulation of lipid synthesis pathways, thereby affecting liver steatosis. The exposure dose of BPA may affect the synergistic effect.
6.Clinical Study of Tongfengke Granules Combined with External Treatment of TCM in the Treatment of Patients with Acute Gouty Arthritis
Lin YANG ; Guifang PI ; Zeqi MU ; Peng XIANG ; Qin WU ; Rui FANG ; Dan LIU
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(9):152-158
Objective To observe the clinical efficacy of Tongfengke Granules combined with external treatment of TCM in acute gouty arthritis(AGA)with damp-heat accumulation type.Methods A total of 96 patients with AGA were divided into the experimental group and the control group according to random number table method,with 48 patients in each group.The control group received meloxicam treatment.On this basis,the experimental group was treated with Tongfengke Granules(1 bag at a time,three times a day,orally)combined with external therapy of TCM(once a day),and mobile continuing care.The treatment for both groups lasted for 2 weeks.The clinical efficacy of both groups was observed.Before and after the treatment,pain visual analogue scale(VAS),TCM syndrome scores,major symptom scores,and levels of serum uric acid(UA),interleukin-6(IL-6),erythrocyte sedimentation rate(ESR),C-reactive protein(CRP),platelet/lymphocyte ratio(PLR),as well as engagement in self-care ability scale(ESCA),general self-efficacy scale(GSES),negative psychological condition[self-rating depression scale(SDS),self-rating anxiety scale(SAS)]were measured.The adverse reactions in both groups were monitored.Results Totally 45 and 47 patients in the experimental group and control group were finally included respectively in the analysis.The total effective rate of the experimental group was 75.6%(34/45),while that of the control group was 63.8%(30/47),with statistical significance(P<0.05).Compared with before treatment,the VAS score and TCM syndrome score in the experimental group decreased significantly(P<0.05);after treatment,the VAS score and TCM syndrome score of the experimental group were lower than those of the control group(P<0.05).Compared with before treatment,the joint pain,joint tenderness,joint swelling,and joint mobility limitation scores in both groups were significantly decreased after treatment(P<0.05,P<0.01);after treatment,the scores of joint pain,joint tenderness,and joint swelling in the experimental group were lower than those in the control group(P<0.01).Compared with before treatment,the levels of UA,ESR,CRP and PLR in both groups decreased significantly after treatment(P<0.01);after treatment,the levels of UA,ESR,CRP and PLR in the experimental group were lower than those in the control group(P<0.05,P<0.01).Compared with before treatment,the experimental group showed significant improvement in ESCA,GSES and SAS after treatment(P<0.05,P<0.01),while the control group showed significant improvement in ESCA(P<0.01);after treatment,the ESCA and GSES of the experimental group were better than those of the control group(P<0.05,P<0.01).There was no statistical significance in safety indicators and incidence of adverse reactions between the two groups(P>0.05).Conclusion Tongfengke Granules combined with external treatment of TCM can significantly improve the clinical efficacy of AGA,reduces UA levels,significantly improves inflammatory response,and has anti-inflammatory,anti-inflammatory,and analgesic effects.
7.Cardiac magnetic resonance image segmentation based on lightweight network and knowledge distillation strategy.
Zeqi LIU ; Ning WANG ; Chong ZHANG ; Guohui WEI
Journal of Biomedical Engineering 2024;41(6):1204-1212
To address the issue of a large number of network parameters and substantial floating-point operations in deep learning networks applied to image segmentation for cardiac magnetic resonance imaging (MRI), this paper proposes a lightweight dilated parallel convolution U-Net (DPU-Net) to decrease the quantity of network parameters and the number of floating-point operations. Additionally, a multi-scale adaptation vector knowledge distillation (MAVKD) training strategy is employed to extract latent knowledge from the teacher network, thereby enhancing the segmentation accuracy of DPU-Net. The proposed network adopts a distinctive way of convolutional channel variation to reduce the number of parameters and combines with residual blocks and dilated convolutions to alleviate the gradient explosion problem and spatial information loss that might be caused by the reduction of parameters. The research findings indicate that this network has achieved considerable improvements in reducing the number of parameters and enhancing the efficiency of floating-point operations. When applying this network to the public dataset of the automatic cardiac diagnosis challenge (ACDC), the dice coefficient reaches 91.26%. The research results validate the effectiveness of the proposed lightweight network and knowledge distillation strategy, providing a reliable lightweighting idea for deep learning in the field of medical image segmentation.
Humans
;
Magnetic Resonance Imaging/methods*
;
Neural Networks, Computer
;
Heart/diagnostic imaging*
;
Deep Learning
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
9.Dynamic observation of the progression of chronic gastritis to gastric cancer in a disease-TCM pattern rat model
Liu SHAN ; Su ZEQI ; Zhang JINGXUAN ; Fan QIONGYIN ; Gao JIAN ; Chen CONG ; Liu XIAOYAO ; Wang TING
Journal of Traditional Chinese Medical Sciences 2021;8(2):124-134
Objective: To dynamically observe the progression of chronic gastritis to gastric cancer (GC) in disease-traditional Chinese medicine (TCM) pattern rats to provide data for understanding the disease pro-gression and effective approaches for drug screening and mechanism exploration.Methods: Wistar rats were randomly divided into control (n=96, half female and half male) and model (n = 336, half female and half male) groups. Model rats received free access to N-methyl-N′-nitro-N-nitrosoguanidine (120μg/mL), sodium deoxycholate (20 mmol/L), and alcohol (45%), and were subjected to intermittent fasting. Mortality rate, body weight, water consumption, food intake, gastric pathology, blood content analysis, and liver and kidney function of model rats were dynamically monitored over 30 weeks. In the 30th week, pattern characteristics were assessed. Gastric pathology and pattern charac-teristics were observed for an additional 8 weeks to evaluate stability. Results: The overall mortality of the model group was 34.82%(33.10%for females and 36.55%for males) at 30 weeks post-intervention. Inflammatory cell infiltration, glandular atrophy, atypical hyperplasia, and GC manifested successively in the gastric mucosa of rats. In model rats, N-methyl-N′-nitro-N-nitro-soguanidine intake was lower in males than in females, whereas pathological changes in the gastric mucosa occurred earlier in females than in males. Notably, gastric mucosal lesions were more severe in males than in females. Our modeling methods maintained stable gastric mucosal lesions for at least 8 weeks after final intervention. The pattern characteristics observed in model rats at the 30th and 38th week were consistent with those of spleen deficiency, blood stasis, and yin deficiency pattern. Blood content and indexes of liver and kidney function in the model group were normal. Conclusion: Our findings provide evidence for the pathological stages underscoring the progression of chronic gastritis to GC in disease-TCM pattern rats, which may facilitate development of relevant pharmacotherapies.
10.Advances in the biosynthesis of pentostatin.
Zeqi SONG ; Huhu LIU ; Xiyu DUAN ; Hui YANG ; Chong WANG ; Xiangyang LU ; Yun TIAN
Chinese Journal of Biotechnology 2021;37(12):4158-4168
Pentostatin is a nucleoside antibiotics with a strong inhibitory effect on adenosine deaminase, and is widely used in the clinical treatment of malignant tumors. However, the high cost hampers its application. In the past 10 years, the biosynthesis of pentostatin were focused on strain breeding, optimization of medium composition and fermentation process. To date, there are no reviews summarizing the elucidated biosynthetic mechanism of pentostatin. This review starts by introducing the various chemical route for production of pentostatin, followed by summarizing the mechanisms of pentostatin biosynthesis in different microorganisms. Finally, challenges for biosynthesis of pentostatin were discussed, and strategies for regulating and improving the microbial synthesis of pentostatin were proposed.
Anti-Bacterial Agents
;
Pentostatin

Result Analysis
Print
Save
E-mail