1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Essential tremor plus affects disease prognosis: A longitudinal study.
Runcheng HE ; Mingqiang LI ; Xun ZHOU ; Lanqing LIU ; Zhenhua LIU ; Qian XU ; Jifeng GUO ; Xinxiang YAN ; Chunyu WANG ; Hainan ZHANG ; Irene X Y WU ; Beisha TANG ; Sheng ZENG ; Qiying SUN
Chinese Medical Journal 2025;138(1):117-119
3.Research progress on mechanism of traditional Chinese medicine in treatment of premature ovarian insufficiency.
Sai-Nan TIAN ; Li TANG ; Sheng-Yu WANG ; Yao CHEN ; Jing ZENG
China Journal of Chinese Materia Medica 2025;50(11):2969-2981
Premature ovarian insufficiency(POI) is a manifestation of ovarian aging, with a global incidence of 3.5%. If not addressed in time, POI can rapidly develop into premature ovarian failure(POF). The incidence of POI is mainly related to genetic factors, iatrogenic factors, autoimmunity, aging, infection, psychological factors, and other influences. POI not only causes menstrual disorders, amenorrhea, infertility, and dyspareunia but also tends to present with symptoms such as mood swings, insomnia, hot flashes, fatigue, as well as osteoporosis, coronary heart disease, diabetes, and other conditions, resulting in long-term psychological and physical health concerns for affected women. From traditional Chinese medicine(TCM)'s perspective, POI is primarily attributed to kidney Yin deficiency, with the main pathogenesis rooted in kidney deficiency, which affects the heart, liver, and spleen. It manifests in different syndrome types, including kidney deficiency with liver Qi stagnation, kidney deficiency with blood stasis, and spleen-kidney Yang deficiency. TCM employs a holistic view, utilizing multi-component TCM, multi-site acupuncture, and multi-target and multi-pathway interventions to treat POI. It offers unique advantages such as strong personalization, high safety, and good efficacy. In this paper, the animal and clinical research literature on the prevention and treatment of POI in the past 10 years was systematically summarized and reviewed. It is found that TCM mainly treats POI and alleviates POI-caused issues such as menstrual disorders, infertility, and emotional instability by regulating the neuroendocrine system(hypothalamic-pituitary-ovarian axis, HPOA) and related signaling pathways, improving ovarian function and antioxidant capacity, enhancing immune function, maintaining mitochondrial energy metabolism, inhibiting ferroptosis, and controlling endoplasmic reticulum stress.
Humans
;
Primary Ovarian Insufficiency/physiopathology*
;
Female
;
Drugs, Chinese Herbal/therapeutic use*
;
Animals
;
Medicine, Chinese Traditional
4.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
5.Additional role of low-density lipoprotein cholesterol on the risk of osteoporosis in men with or without coronary heart disease: a real-world longitudinal study.
Jing ZENG ; Zi-Mo PAN ; Ting LI ; Ze-Yu CHEN ; Xiao-Yan CAI ; Mei-Liang GONG ; Xin-Li DENG ; Sheng-Shu WANG ; Nan LI ; Miao LIU ; Chun-Lin LI
Journal of Geriatric Cardiology 2025;22(2):219-228
BACKGROUND:
Early control of low-density lipoprotein cholesterol (LDL-C) is crucial for reducing the progress of cardiovascular disease. However, its additional role to the risk of primary osteoporosis in men with coronary heart disease was inconclusive. Our study aims to determine the association of LDL-C and its trajectories for osteoporosis risk in the middle-aged and aged men of China.
METHODS:
The retrospective cohort study of 1546 men aged 69.74 ± 11.30 years conducted in Beijing, China from 2015 to 2022. And the incidence of primary osteoporosis was annually recorded. LDL-C trajectories were further identified by latent class growth model using repeated measurements of LDL-C. The association of baseline LDL-C for osteoporosis was estimated using hazard ratio (HR) with 95% CI in Cox proportional hazard model, while mean level and trajectories of LDL-C for osteoporosis were evaluated using odds ratio (OR) with 95% CI in logistic regression model.
RESULTS:
During the median 6.2-year follow-up period, 70 men developed primary osteoporosis. The higher level of baseline LDL-C (HR = 1.539, 95% CI: 1.012-2.342) and mean LDL-C (OR = 2.190, 95% CI: 1.443-3.324) were associated with higher risk of osteoporosis in men with coronary heart disease after adjusted for covariates. Compared with those in the LDL-C trajectory of low-stable decrease, participants with medium-fluctuant trajectory, whose longitudinal LDL-C started with a medium LDL-C level and appeared an increase and then decrease, were negatively associated with osteoporosis risk (OR = 2.451, 95% CI: 1.152-5.216). And participants with initially high LDL-C level and then a rapid decrease demonstrated a tendency towards reduced risk (OR = 0.718, 95% CI: 0.212-2.437).
CONCLUSIONS
Elevated LDL-C level and its long-term fluctuation may increase the risk of primary osteoporosis in men. Early controlling a stable level of LDL-C is also essential for bone health.
6.Long-chain acylcarnitine deficiency promotes hepatocarcinogenesis.
Kaifeng WANG ; Zhixian LAN ; Heqi ZHOU ; Rong FAN ; Huiyi CHEN ; Hongyan LIANG ; Qiuhong YOU ; Xieer LIANG ; Ge ZENG ; Rui DENG ; Yu LAN ; Sheng SHEN ; Peng CHEN ; Jinlin HOU ; Pengcheng BU ; Jian SUN
Acta Pharmaceutica Sinica B 2025;15(3):1383-1396
Despite therapy with potent antiviral agents, chronic hepatitis B (CHB) patients remain at high risk of hepatocellular carcinoma (HCC). While metabolites have been rediscovered as active drivers of biological processes including carcinogenesis, the specific metabolites modulating HCC risk in CHB patients are largely unknown. Here, we demonstrate that baseline plasma from CHB patients who later developed HCC during follow-up exhibits growth-promoting properties in a case-control design nested within a large-scale, prospective cohort. Metabolomics analysis reveals a reduction in long-chain acylcarnitines (LCACs) in the baseline plasma of patients with HCC development. LCACs preferentially inhibit the proliferation of HCC cells in vitro at a physiological concentration and prevent the occurrence of HCC in vivo without hepatorenal toxicity. Uptake and metabolism of circulating LCACs increase the intracellular level of acetyl coenzyme A, which upregulates histone H3 Lys14 acetylation at the promoter region of KLF6 gene and thereby activates KLF6/p21 pathway. Indeed, blocking LCAC metabolism attenuates the difference in KLF6/p21 expression induced by baseline plasma of HCC/non-HCC patients. The deficiency of circulating LCACs represents a driver of HCC in CHB patients with viral control. These insights provide a promising direction for developing therapeutic strategies to reduce HCC risk further in the antiviral era.
7.Natural products for the treatment of age-related macular degeneration: New insights focusing on mitochondrial quality control and cGAS/STING pathway.
Xuelu XIE ; Shan LIAN ; Wenyong YANG ; Sheng HE ; Jingqiu HE ; Yuke WANG ; Yan ZENG ; Fang LU ; Jingwen JIANG
Journal of Pharmaceutical Analysis 2025;15(5):101145-101145
Age-related macular degeneration (AMD) is a disease that affects the vision of elderly individuals worldwide. Although current therapeutics have shown effectiveness against AMD, some patients may remain unresponsive and continue to experience disease progression. Therefore, in-depth knowledge of the mechanism underlying AMD pathogenesis is urgently required to identify potential drug targets for AMD treatment. Recently, studies have suggested that dysfunction of mitochondria can lead to the aggregation of reactive oxygen species (ROS) and activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) innate immunity pathways, ultimately resulting in sterile inflammation and cell death in various cells, such as cardiomyocytes and macrophages. Therefore, combining strategies targeting mitochondrial dysfunction and inflammatory mediators may hold great potential in facilitating AMD management. Notably, emerging evidence indicates that natural products targeting mitochondrial quality control (MQC) and the cGAS/STING innate immunity pathways exhibit promise in treating AMD. Here, we summarize phytochemicals that could directly or indirectly influence the MQC and the cGAS/STING innate immunity pathways, as well as their interconnected mediators, which have the potential to mitigate oxidative stress and suppress excessive inflammatory responses, thereby hoping to offer new insights into therapeutic interventions for AMD treatment.
8.Effects of Hot Night Exposure on Human Semen Quality: A Multicenter Population-Based Study.
Ting Ting DAI ; Ting XU ; Qi Ling WANG ; Hao Bo NI ; Chun Ying SONG ; Yu Shan LI ; Fu Ping LI ; Tian Qing MENG ; Hui Qiang SHENG ; Ling Xi WANG ; Xiao Yan CAI ; Li Na XIAO ; Xiao Lin YU ; Qing Hui ZENG ; Pi GUO ; Xin Zong ZHANG
Biomedical and Environmental Sciences 2025;38(2):178-193
OBJECTIVE:
To explore and quantify the association of hot night exposure during the sperm development period (0-90 lag days) with semen quality.
METHODS:
A total of 6,640 male sperm donors from 6 human sperm banks in China during 2014-2020 were recruited in this multicenter study. Two indices (i.e., hot night excess [HNE] and hot night duration [HND]) were used to estimate the heat intensity and duration during nighttime. Linear mixed models were used to examine the association between hot nights and semen quality parameters.
RESULTS:
The exposure-response relationship revealed that HNE and HND during 0-90 days before semen collection had a significantly inverse association with sperm motility. Specifically, a 1 °C increase in HNE was associated with decreased sperm progressive motility of 0.0090 (95% confidence interval [ CI]: -0.0147, -0.0033) and decreased total motility of 0.0094 (95% CI: -0.0160, -0.0029). HND was significantly associated with reduced sperm progressive motility and total motility of 0.0021 (95% CI: -0.0040, -0.0003) and 0.0023 (95% CI: -0.0043, -0.0002), respectively. Consistent results were observed at different temperature thresholds on hot nights.
CONCLUSION
Our findings highlight the need to mitigate nocturnal heat exposure during spermatogenesis to maintain optimal semen quality.
Humans
;
Male
;
Semen Analysis
;
Adult
;
Sperm Motility
;
Hot Temperature/adverse effects*
;
China
;
Middle Aged
;
Spermatozoa/physiology*
;
Young Adult
9.Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment
ZENG SHENG ; XING SHAOQIANG ; ZHANG YIFEI ; WANG HAIFENG ; LIU QIAN
Journal of Zhejiang University. Science. B 2024;25(7):557-567
Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery,radiotherapy,and chemotherapy,with some promising results.It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells.However,the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity.Recently,nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens,activating targeted T cells,modulating the immunosuppressive tumor microenvironment,and improving the treatment efficacy.Bacillus Calmette-Guérin(BCG)is a live attenuated Mycobacterium bovis vaccine used to prevent tuberculosis,which was first reported to have antitumor activity in 1927.BCG therapy can activate the immune system by inducing various cytokines and chemokines,and its specific immune and inflammatory responses exert antitumor effects.BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer,which effectively improved immune antitumor activity and prevented tumor recurrence.More recently,nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses.In this study,we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.
10.Traditional Chinese Medicine Intervention in Sepsis Based on TLR4 Signaling Pathway: A Review
Jing YAN ; Sheng XIE ; Laian GE ; Guangyao WANG ; Zhu LIU ; Bingjie HAN ; Yaoxuan ZENG ; Jinchan PENG ; Jincheng QIAN ; Liqun LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):282-291
Sepsis is one of the common severe diseases caused by the dysregulated host response to infection, which seriously threatens the life and health of human beings all over the world. The incidence and mortality of the disease are extremely high, and it has always been an urgent problem to be solved in the field of acute and critical diseases. At present, anti-infection, fluid resuscitation, mechanical ventilation and other programs are most used in clinic to treat sepsis, but their poor prognosis and high cost and other issues remain to be resolved. Therefore, it is necessary to explore a new, efficient, safe and inexpensive drug and treatment model at this stage. The treatment of traditional Chinese medicine (TCM) is based on syndrome differentiation and holistic concept. It can effectively regulate the progression of sepsis, maintain the homeostasis of the body, and has fewer adverse reactions. It has achieved good clinical results. In recent years, a large number of studies have shown that TCM can reduce the inflammatory response by regulating the Toll-like receptor 4(TLR4) signaling pathway, thereby reducing the severity and mortality of sepsis patients. However, there is still a lack of systematic exposition of TCM regulating TLR4 signaling pathway in the treatment of sepsis. Therefore, this article summarizes the relationship between TLR4 signaling pathway and sepsis and the mechanism of TCM in the disease by searching and consulting relevant literature in recent years. It is found that some Chinese medicine monomers and active ingredients, Chinese medicine compounds and Chinese medicine preparations can effectively reduce systemic inflammatory response, repair organ damage and improve the prognosis of sepsis by inhibiting the activation of TLR4 signaling pathway. However, due to various limitations, some studies have directly focused on the differential expression and function of TLR4, ignoring the downstream molecular expression and phenotypic effects of TLR4. The alternative mechanism, relationship and specific molecular mechanism of the pathway are still unclear. There are problems such as unclear pharmacokinetics and unclear mechanism in the pro- and anti-inflammatory balance, which need to be further studied and explored in order to provide new ideas for the potential treatment and drug development for sepsis.

Result Analysis
Print
Save
E-mail