1.Astragaloside IV alleviates D-GAL-induced endothelial cell senescence by promoting mitochondrial autophagy via inhibiting the PINK1/Parkin pathway.
Ming YI ; Ye LUO ; Lu WU ; Zeheng WU ; Cuiping JIANG ; Shiyu CHEN ; Xiao KE
Journal of Southern Medical University 2025;45(11):2427-2437
OBJECTIVES:
To explore the mechanism by which astragaloside IV (AS-IV) alleviates D-galactose (D-GAL)-induced senescence in human umbilical vein endothelial cells (HUVECs).
METHODS:
Cultured HUVECs were treated with D-GAL (40 g/L), AS-IV (200 μmol/L), D-GAL+AS-IV, or D-GAL+AS-IV+MTK458 (a mitochondrial autophagy agonist, 25 μmol/L) for 48 h, and the changes in cell proliferation, migration, and angiogenesis capacity were evaluated. Cell apoptosis, reactive oxygen species (ROS) levels, mitochondrial membrane potential, and expressions of autophagy-related proteins (LC3-II/LC3-I) and PINK1/Parkin pathway proteins in the treated cells were detected.
RESULTS:
AS-IV treatment significantly reduced the inhibitory effect of D-GAL on HUVEC viability, effectively alleviated D-GAL-induced impairment of tube-forming ability, and promoted angiogenesis and migration ability of the cells. AS-IV also significantly reduced the rate of D-GAL-induced HUVECs positive for senescence-associated β-galactosidase (SA-β-Gal) staining and inhibited the expression of senescence-related genes P21 and P53. AS-IV restored mitochondrial membrane potential and reduced intracellular ROS levels in D-GAL-induced HUVECs, and inhibited the fusion of autophagosomes and lysosomes to prevent the completion of autophagic flux. In HUVECs treated with both D-GAL and AS-IV, the application MTK458 significantly increased the number of yellow spots and enhanced the expressions of P21, P53, PINK1, Parkin, LC3, and Beclin proteins.
CONCLUSIONS
AS-IV alleviates D-GAL-induced endothelial cell senescence by inhibiting the PINK1/Parkin pathway to regulate mitochondrial autophagy.
Humans
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Cellular Senescence/drug effects*
;
Autophagy/drug effects*
;
Saponins/pharmacology*
;
Ubiquitin-Protein Ligases/metabolism*
;
Mitochondria/drug effects*
;
Triterpenes/pharmacology*
;
Protein Kinases/metabolism*
;
Galactose/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction/drug effects*
;
Cells, Cultured
;
Apoptosis/drug effects*
;
Membrane Potential, Mitochondrial
;
Cell Proliferation/drug effects*

Result Analysis
Print
Save
E-mail