1.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
2.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
3.HAN Mingxiang's Experience in Clinical Application of Zeqi (Euphorbia HelioscopiaL.)
Jian DING ; Weizhen GUO ; Jiabing TONG ; Zegeng LI ;
Journal of Traditional Chinese Medicine 2025;66(4):340-343
This paper summarizes Professor HAN Mingxiang's clinical experience in the use of Zeqi (Euphorbia HelioscopiaL.). It is believed that Zeqi (Euphorbia HelioscopiaL.) has the effects of promoting qi, relieving water retention and swelling, resolving phlegm, stopping cough, dissipating masses, activating blood, removing stasis, and detoxifying. In clinical practice, Zeqi (Euphorbia HelioscopiaL.) is flexibly applied in the treatment of skin diseases, respiratory diseases, tumors, etc. For instance, in treating psoriasis with the pathogenesis of damp-heat toxin, a compound prescription of Zeqi Decoction (泽漆汤) is formulated. For bronchial asthma with kidney deficiency and water retention, Zeqi Decoction is commonly combined with Wuling Powder (五苓散) in adjusted doses. For lung nodules with a combination of deficiency, phlegm, stasis, and toxin, a Lung Nodule Prescription is proposed. For advanced lung cancer with both qi and yin deficiency and toxin accumulation, Qiyu Sanlong Decoction (芪玉三龙汤) is suggested, and for cancer-related ascites with qi deficiency and water retention, Wuling Powder combined with Zeqi (Euphorbia HelioscopiaL.)is chosen.
4.Exploration of Pulmonary Vascular Remodeling Improvement in Rats at Different Stages of Chronic Obstructive Pulmonary Disease by Qibai Pingfei Capsules Based on TLR4/NF-κB Signaling Pathway
Lu ZHANG ; Li FANG ; Shuyu XU ; Xue LIANG ; Jie ZHU ; Xiangli TONG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):48-56
ObjectiveTo investigate the improvement effect of Qibai Pingfei capsules on pulmonary vascular remodeling in rats at different stages of chronic obstructive pulmonary disease (COPD) and to analyze its possible mechanism of action. MethodsMale Sprague-Dawley (SD) rats were randomly divided into a normal group, an early COPD model group, an advanced COPD model group, an early-intervention high-dose group, a late-intervention high-dose group, an early-intervention low-dose group, a late-intervention low-dose group, an early-intervention pyrrolidine dithiocarbamate (PDTC) group, and a late-intervention PDTC group, with 15 rats in each group. A rat model of early COPD was constructed by using cigarette smoke combined with airway infusion using lipopolysaccharide(LPS), and a rat model of advanced COPD was constructed by using airway infusion with LPS, cigarette smoke, and hypoxia. All groups except the normal group were given LPS airway drops on days 1 and 14 of the experiment, smoked for 1 h per day, and administered the drug once a day for 40 weeks from day 15 onward. In the high- and low-dose groups, rats were given 1 g·kg-1 and 250 mg·kg-1 Qibai Pingfei capsules, respectively by gavage, and in PDTC groups, rats were given 100 mg·kg-1 of PDTC by intraperitoneal injection. The advanced COPD model group underwent 6 h of hypoxia per day in weeks 5-6. Lung function and mean pulmonary artery pressure were tested in rats. Morphologic changes in lung tissues were detected by hematoxylin-eosin(HE)staining. Collagen deposition in lung tissues was examined by Masson staining, and the levels of inflammatory factors including interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α)in lung tissues were detected by enzyme-linked immunosorbent assay (ELISA). The number of inflammatory cells in the alveolar lavage fluid of rats in each group was detected by Giemsa staining, and the protein expression of Toll-like receptor 4(TLR4), myeloid differentiation factor 88(MyD88), nuclear factor-κB(NF-κB), TNF-α, vascular endothelial-cadherin(VE-cadherin), α-smooth muscle actin(α-SMA), and platelet endothelial cell adhesion molecule-1(CD31) was detected by Western blot in the lung tissues of rats. ResultsCompared with the normal group, the model group showed significantly decreased forced expiratory volume in 0.3 s (FEV0.3), forced vital capacity (FVC), and FEV0.3/FVC ratio related to lung function (P<0.05), thickening of pulmonary vasculature, increased collagen deposition in the lungs, and enhanced mean pulmonary arterial pressure and expression levels of IL-6, IL-1β, and TNF-α (P<0.05). Additionally, the model group also exhibited increased numbers of macrophages, lymphocytes, and neutrophils (P<0.05), significantly higher protein expression of TLR4, MyD88, NF-κB, TNF-α, and α-SMA (P<0.05), and significantly lower protein expression of VE-cadherin and CD31 (P<0.05). Lung function was significantly improved in the Qibai Pingfei capsules groups compared with the model group (P<0.05), with mean pulmonary arterial pressure reduced and pulmonary vascular thickening and collagen deposition in the lungs ameliorated. The Qibai Pingfei capsules groups also showed reduced expression levels of IL-6, IL-1β, and TNF-α (P<0.05) and decreased numbers of macrophages, lymphocytes, and neutrophils (P<0.05), as well as reduced protein expression of TLR4, MyD88, NF-κB, TNF-α, and α-SMA (P<0.05) and elevated protein expression of VE-cadherin and CD31 (P<0.05) in rat lung tissues. ConclusionQibai Pingfei capsules inhibits inflammatory response and endothelial-to-mesenchymal transition probably by regulating the TLR4/NF-κB signaling pathway, thus improving pulmonary vascular remodeling in COPD model rats and showing therapeutic effects in the early stage of COPD.
5.HAN Mingxiang's Experience in Staged and Syndrome-Based Treatment of Chronic Obstructive Pulmonary Disease
Jian DING ; Hui TAO ; Gang CHENG ; Weizhen GUO ; Zegeng LI ; Ya MAO ;
Journal of Traditional Chinese Medicine 2025;66(8):780-785
This paper summarizes Professor HAN Mingxiang's clinical experience in treating chronic obstructive pulmonary disease (COPD). He believes that the key pathomechanism of COPD in the acute exacerbation stage is the invasion of external pathogens triggering latent illness, while lung qi deficiency is the primary mechanism in the stable stage. The core pathological factors throughout disease progression are deficiency, phlegm, and blood stasis. Treatment emphasizes a staged and syndrome-based approach. During the acute exacerbation stage, for wind-cold invading the lung syndrome, the self-formulated Sanzi Wenfei Decoction (三子温肺汤) is used to relieve the exterior, dispel cold, warm the lung, and resolve phlegm. For phlegm-dampness obstructing the lung syndrome, Huatan Jiangqi Fomulation (化痰降气方) is prescribed to warm the lung, transform phlegm, descend qi, and calm wheezing. For phlegm-heat obstructing the lung syndrome, Qingfei Huatan Fomulation (清肺化痰方) is applied to clear heat, resolve phlegm, moisten the lung, and stop coughing. For phlegm and blood stasis interlocking syndrome, Qibai Pingfei Fomulation (芪白平肺方) is used to tonify qi, resolve phlegm, and activate blood circulation to remove stasis. During the stable stage, for lung qi deficiency syndrome, Shenqi Wenfei Decoction (参芪温肺汤) is employed to warm the lung, tonify qi, resolve phlegm, and eliminate turbidity. For lung-spleen qi deficiency syndrome, Shenqi Buzhong Decoction (参芪补中汤) is utilized to strengthen the spleen, tonify qi, and reinforce metal (lung) from earth (spleen). For lung-kidney deficiency syndrome, Shenqi Tiaoshen Fomulation (参芪调肾方) is prescribed to tonify the lung, warm yang, and regulate kidney function to calm wheezing. These strategies provide insights into the traditional Chinese medicine treatment of COPD.
6.Shenqi Buzhong Formula ameliorates mitochondrial dysfunction in a rat model of chronic obstructive pulmonary disease by activating the AMPK/SIRT1/PGC-1α pathway.
Lu ZHANG ; Huanzhang DING ; Haoran XU ; Ke CHEN ; Bowen XU ; Qinjun YANG ; Di WU ; Jiabing TONG ; Zegeng LI
Journal of Southern Medical University 2025;45(5):969-976
OBJECTIVES:
To explore the mechanism of Shenqi Buzhong (SQBZ) Formula for alleviating mitochondrial dysfunction in a rat model of chronic obstructive pulmonary disease (COPD) in light of the AMPK/SIRT1/PGC-1α pathway.
METHODS:
Fifty male SD rat models of COPD, established by intratracheal lipopolysaccharide (LPS) instillation, exposure to cigarette smoke, and gavage of Senna leaf infusion, were randomized into 5 groups (n=10) for treatment with saline (model group), SQBZ Formula at low, moderate and high doses (3.08, 6.16 and 12.32 g/kg, respectively), or aminophylline (0.024 g/kg) by gavage for 4 weeks, with another 10 untreated rats as the control group. Pulmonary function of the rats were tested, and pathologies and ultrastructural changes of the lung tissues were examined using HE staining and transmission electron microscopy. The levels of SOD, ATP, MDA, and mitochondrial membrane potential in the lungs were detected using WST-1, colorimetric assay, TBA, and JC-1 methods. Flow cytometry was used to analyze ROS level in the lung tissues, and the protein expression levels of P-AMPKα, AMPKα, SIRTI, and PGC-1α were detected using Western blotting.
RESULTS:
The rat models of COPD showed significantly decreased lung function, severe histopathological injuries of the lungs, decreased pulmonary levels of SOD activity, ATP and mitochondrial membrane potential, increased levels of MDA and ROS, and decreased pulmonary expressions of P-AMPKα, SIRTI, and PGC-1α proteins. All these changes were significantly alleviated by treatment with SQBZ Formula and aminophylline, and the efficacy was comparable between high-dose SQBZ Formula group and aminophylline group.
CONCLUSIONS
SQBZ Formula ameliorates mitochondrial dysfunction in COPD rats possibly by activating the AMPK/SIRT1/PGC-1α pathway.
Animals
;
Pulmonary Disease, Chronic Obstructive/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Sirtuin 1/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
AMP-Activated Protein Kinases/metabolism*
;
Mitochondria/metabolism*
;
Disease Models, Animal
;
Signal Transduction/drug effects*
7.Pingchuanning Formula suppresses airway inflammation in a rat model of asthmatic cold syndrome by regulating the HMGB1/Beclin-1 axis-mediated autophagy.
Xinheng WANG ; Xiaohan SHAO ; Tongtong LI ; Lu ZHANG ; Qinjun YANG ; Weidong YE ; Jiabing TONG ; Zegeng LI ; Xiangming FANG
Journal of Southern Medical University 2025;45(6):1153-1162
OBJECTIVES:
To explore the mechanism of Pingchuanning Formula (PCN) for inhibiting airway inflammation in rats with asthmatic cold syndrome.
METHODS:
A total of 105 SD rats were randomized equally into 7 groups, including a control group, an asthmatic cold syndrome model group, 3 PCN treatment groups at high, medium and low doses, a Guilong Kechuanning (GLCKN) treatment group, and a dexamethasone (DEX) treatment group. In all but the control rats, asthma cold syndrome models were established and daily gavage of saline, PCN, GLCKN or DEX was administered 29 days after the start of modeling. The changes in general condition, lung function and lung histopathology of the rats were observed, and inflammatory factors in the alveolar lavage fluid (BALF), oxidative stress, lung tissue ultrastructure, cytokine levels, and expressions of the genes related to the HMGB1/Beclin-1 axis and autophagy were analyzed.
RESULTS:
The rat models had obvious manifestations of asthmatic cold syndrome with significantly decreased body mass, food intake, and water intake, reduced FEV0.3, FVC, and FEV0.3/FVC, obvious inflammatory cell infiltration in the lung tissue, and increased alveolar inflammation score and counts of neutrophils, eosinophils, lymphocytes, macrophages, and leukocytes in the BALF. The rat models also had significantly increased MDA level and decreased SOD level and exhibited obvious ultrastructural changes in the lung tissues, where the expressions of HMGB1, Beclin-1, ATG5, TNF-α, IL-6,IL-1β, and IL-13 and the LC3II/I ratio were increased, while the levels of Bcl-2 and IFN-γ were decreased. PCN treatment significantly improved these pathological changes in the rat models, and its therapeutic effect was better than that of GLKCN and similar to that of DEX.
CONCLUSIONS
PCN can effectively alleviate airway inflammation in rat models of asthmatic cold syndrome possibly by modulating the HMGB1/Beclin-1 signaling axis to suppress cell autophagy, thereby attenuating airway inflammatory damages.
Animals
;
Rats
;
Autophagy/drug effects*
;
Rats, Sprague-Dawley
;
Asthma/pathology*
;
Beclin-1
;
HMGB1 Protein/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Disease Models, Animal
;
Male
;
Lung/pathology*
;
Inflammation
8.Sangma Zhike Formula alleviates airway inflammation and hyperresponsiveness in rats with postinfectious cough by inhibiting the TRPV1-SP/CGRP and pyroptosis pathways.
Qinjun YANG ; Hongyu ZHU ; Yuan GAO ; Cheng YANG ; Tong LIU ; Lu ZHANG ; Jiabing TONG ; Zegeng LI
Journal of Southern Medical University 2025;45(9):1830-1839
OBJECTIVES:
To investigate the therapeutic mechanism of Sangma Zhike Formula (SMZKF) for relieving cough sensitivity and airway inflammation in rats with postinfectious cough (PIC).
METHODS:
Male SD rat models were established by cigarette smoke exposure with intranasal LPS instillation and capsaicin aerosol inhalation. From day 19 following the start of PIC modeling, the rats received daily treatment with saline (model group), low-, medium-, and high-dose SMZKF, and compound methoxyphenamine (ASM) via gavage for 10 consecutive days (n=8). The assessments included behavioral changes, cough sensitivity (latency and frequency), lung histopathology, inflammatory cell counts and cytokine/mediator levels in the bronchoalveolar lavage fluid (BALF), oxidative stress markers in the lung tissue, and expressions of proteins related with cough hypersensitivity and pyroptosis.
RESULTS:
The rat models of PIC exhibited reduced mental alertness, accelerated respiration, and pronounced symptoms such as coughing, sneezing, and facial scratching with significantly shortened cough latency and increased 5-min cough frequency. Histopathological analysis revealed collapsed alveolar structures, thickened alveolar septa, and extensive inflammatory cell infiltration in the bronchi and peribronchial regions, accompanied by elevated bronchial and alveolar inflammation scores of the rat models. In the BALF, inflammatory cell counts and the levels of IL-1β, TNF-α, IL-6, COX-2, PGE-2, and TXA-2 were all markedly elevated, and the pulmonary oxidative stress markers (ROS and MDA) and myeloperoxidase (MPO) activity were also significantly increased. The pulmonary expressions of cough hypersensitivity-related proteins (TRPV1, SP, CGRP, and NK1R) and pyroptosis-associated markers (P-NF-κB, NLRP3, ACS, cleaved caspase-1, cleaved IL-1β, and GSDMD-N) were significantly upregulated in the model group. SMZKF interventions significantly ameliorated these pathological changes in the rat models, and high-dose SMZKF produced a similar therapeutic efficacy to that of ASM.
CONCLUSIONS
SMZKF alleviates cough sensitivity and airway inflammation in PIC rats possibly by inhibiting TRPV1-mediated SP/NK1R signaling and the NLRP3/caspase-1/GSDMD pyroptosis pathway.
Animals
;
Cough/metabolism*
;
Rats, Sprague-Dawley
;
Pyroptosis/drug effects*
;
Male
;
TRPV Cation Channels/metabolism*
;
Rats
;
Drugs, Chinese Herbal/pharmacology*
;
Inflammation
;
Signal Transduction
9.Shenqi Tiaoshen Formula alleviates airway inflammation in rats with chronic obstructive pulmonary disease and kidney qi deficiency syndrome by inhibiting ferroptosis via regulating the Nrf2/SLC7A11/GPX4 signaling pathway
Qinjun YANG ; Hui WANG ; Shuyu XU ; Cheng YANG ; Huanzhang DING ; Di WU ; Jie ZHU ; Jiabing TONG ; Zegeng LI
Journal of Southern Medical University 2024;44(10):1937-1946
Objective To investigate the effects of Shenqi Tiaoshen Formula(SQTSF)for alleviating airway inflammation in rats with both chronic obstructive pulmonary disease(COPD)and lung-kidney qi deficiency syndrome and explore its therapeutic mechanism.Methods Forty-eight SD rats were randomly divided into control group,model group,low-,medium-,and high-dose SQTSF groups,and aminophylline(APL)group.In all but the control group,rat models of COPD with lung-kidney qi deficiency syndrome were established and treated with saline,SQTSF or APL via daily gavage as indicated(starting from day 30).The rats were observed for changes in body weight,grip strength,lung function,lung pathology,inflammatory cytokines in bronchoalveolar lavage fluid(BALF),oxidative stress levels,iron ion metabolism,cellular and mitochondrial ultrastructural changes in the lung tissue,and expressions of Nrf2/SLC7A11/GPX4 signaling pathway and ferroptosis-related proteins.Results The rats in the model group exhibited obvious symptoms of lung-kidney qi deficiency syndrome with significantly decreased body weight,grip strength,and lung function parameters.Examination of the lung tissue revealed showed significant inflammatory cell infiltration and emphysema with obvious bronchial,perivascular,and alveolar inflammation and alveolar destruction,significantly increased IL-1β,TNF-α,IL-6,and IL-13 levels in BALF,and elevated pulmonary oxidative stress levels and Fe2+and total iron ion concentrations.The rat models also showed characteristic ultrastructural changes of ferroptosis in the lung tissue cells under transmission electron microscope and significantly decreased Nrf2,GPX4,and SLC7A11 and increased ACSL4 expressions in the lung tissue.Treatment with SQTSF significantly improved these pathological changes in the rat models with a better effect than APL.Conclusion SQTSF can effectively improve airway inflammation and oxidative stress in COPD rats with lung-kidney qi deficiency possibly by inhibiting ferroptosis via regulating the Nrf2/SLC7A11/GPX4 signaling pathway.
10.Liuwei Buqi Formula delays progression of chronic obstructive pulmonary disease in rats by regulating the NLRP3/caspase-1/GSDMD pyroptosis pathway
Li MEI ; Lu ZHANG ; Di WU ; Huanzhang DING ; Xinru WANG ; Xian ZHANG ; Yuhang WEI ; Zegeng LI ; Jiabing TONG
Journal of Southern Medical University 2024;44(11):2156-2162
Objective To explore the therapeutic mechanism of Liuwei Buqi(LWBQ)Formula for chronic obstructive pulmonary disease(COPD)in rat models.Methods SD rat models of COPD established by cigarette smoking combined with intratracheal lipopolysaccharide(LPS)instillation and hormone injection were treated with LWBQ Formula by gavage with or without intraperitoneal injection of MCC950 for 3 weeks,starting at the 5th week of modeling.After the treatments,the rats were examined for lung pathologies,lung function,total cell count and white blood cell count in bronchoalveolar lavage fluid(BALF),and serum levels of IL-6,TNF-α,IL-18 and NO.The mRNA expressions of NLRP3,ASC,caspase-1,GSDMD-N,IL-1β,and IL-18 in the lung tissue were detected with qRT-PCR.Results Compared with the normal control rats,the COPD rat models had severe lung pathologies and showed significantly decreased lung function,increased total cell and leukocyte subset counts in BALF,and increased serum levels of IL-6,TNF-α,IL-18 and NO and mRNA expressions of pyroptosis-related proteins in the lung tissue.Treatment of the rat models with LWBQ Formula significantly improved lung pathology and lung function,reduced total cell and leukocyte counts in BALF,and decreased serum levels of the inflammatory factors and expressions of pyroptosis-related proteins in the lung tissue.The combined treatment with MCC950 further improved lung pathology and function in spite of a significant difference,but BALF cell counts,serum inflammatory factor levels and pulmonary expressions of pyroptosis-related proteins were all significantly reduced following the treatment.Conclusion LWBQ Formula can delay the progression of COPD in rats possibly by inhibiting lung tissue pyroptosis via regulating the NLRP3/caspase-1/GSDMD pathway to reduce inflammatory response and lung damage.

Result Analysis
Print
Save
E-mail