1.Research progress on the health communication capacity of clinicians
Dingbin CAI ; Luis Manuel Dias MARTINS ; Zefeng LU ; Sanhao HUANG ; Shuangmiao WANG ; Qini HUANG ; Zhaoji LONG ; Xinxin CHEN ; Siyang YE ; Dong WANG
China Occupational Medicine 2025;52(2):216-221
Health communication aims to improve public health attitudes and behaviors by propagating health information. It plays an important role in promoting public health literacy and "Healthy China Initiative". The basic theories of health communication include "7 W" and Theory of Planned Behavior. Clinicians with profound medical expertise and a wealth of clinical practice play key roles in the communication, and they hold an unparalleled advantage in health communication by delivering authoritative and trustworthy information to the public. The capacity of health communication among clinicians in the nation is determined by various factors including professional characteristics, policy support, dissemination platforms and pathways, time and effort. Meanwhile, some problems in the research on the health communication capacity of clinicians remain, such as lack of well-established motivation systems, limited dissemination pathways, and imperfect evaluation frameworks. In some regions of China, health communication performance has been considered as part of the professional title evaluation for clinical physicians. Medical institutions and universities have also initiated relevant training and practice programs. It is crucial to improve evaluation frameworks, strengthen training pathways and effectiveness assessment, promote interdisciplinary integration, and enhance the role of clinicians in health communication in the future.
2.Mechanism of Mingshi Prescription in Regulating Opn4-dopamine Axis to Inhibit Endoplasmic Reticulum Stress and Delay Myopia Progression
Baohua LI ; Zefeng KANG ; Lulu WANG ; Xin YAN ; Jianquan WANG ; Xinyue HOU ; Bobiao NING ; Shanshan YE ; Mengyu LIU ; Yipeng SHI ; Danyu LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):58-67
ObjectiveTo investigate the mechanism by which Mingshi prescription regulates the retinal melanopsin-dopamine (Opn4-DA) axis in myopic mice to inhibit endoplasmic reticulum (ER) stress in the retina and sclera, thereby delaying axial elongation associated with myopia. MethodsSixty 4-week-old male SPF-grade C57BL/6J mice were randomly divided into a normal group, a form-deprived myopia group (FDM group), an intrinsically photosensitive retinal ganglion cells ablation group (ipRGCs group), a Mingshi Prescription group (MSF group, 5.2 g·kg-1), and an ipRGCs + MSF group (5.2 g·kg-1). Except for the normal group, all other groups underwent FDM modeling. Additionally, the ipRGCs and ipRGCs + MSF groups received retinal ipRGC ablation. Three weeks after modeling, the MSF and ipRGCs + MSF groups were administered Mingshi prescription via continuous gavage for six weeks. After refraction and axial length were measured in all mice, eyeballs were collected along with retinal and scleral tissues. Pathological and morphological changes in the retina, choroid, and sclera were observed using periodic acid-Schiff (PAS) staining. Western blot was employed to detect the relative protein expression levels of dopamine D1 receptor (DRD1), C/EBP homologous protein (CHOP), and glucose-regulated protein 78 (GRP78) in the retina, and CHOP and GRP78 in the sclera. Real-time PCR was used to detect the relative mRNA expression of Opn4, CHOP, and GRP78 in the retina, and CHOP and GRP78 in the sclera. Immunofluorescence staining (IF) was performed to detect the expression of Opn4 and DRD1 in retinal tissues. ResultsCompared with the normal group, the FDM group showed a significant myopic shift in refraction (P<0.05) and a significant increase in axial length (P<0.05). The retinal layers were thinner, the number of ganglion cells was reduced, and collagen fibers in the sclera were loosely arranged with evident gaps. Opn4 and DRD1 protein and mRNA expression in the retina were significantly decreased (P<0.05), while CHOP and GRP78 protein and mRNA expression in both retinal and scleral tissues were significantly increased (P<0.05). Compared with the FDM group, the ipRGCs group exhibited further increases in myopic refraction and axial length (P<0.05), more pronounced thinning and looseness in the retinal, choroidal, and scleral layers, lower expression of Opn4 and DRD1 protein and mRNA in the retina (P<0.05), and higher expression of CHOP and GRP78 protein and mRNA in the retina and sclera (P<0.05). Compared with the FDM group, the MSF group showed significantly reduced refractive error and axial length (P<0.05), with improved cellular number, arrangement, and thickness in ocular tissues, increased Opn4 and DRD1 protein and mRNA expression in the retina (P<0.05), and reduced CHOP and GRP78 protein and mRNA expression in both retina and sclera (P<0.05). Similarly, the ipRGCs + MSF group showed significant improvements in terms of the above items compared with the ipRGCs group (P<0.05). ConclusionMingshi Prescription delays myopic axial elongation and refractive progression by regulating the Opn4-DA axis in the retina of myopic mice, thereby inhibiting ER stress in the retina and sclera. This intervention promotes Qi and blood nourishment of the eyes, softens the fascia, and restores ocular rhythm.
3.Chaihu and Longgu Mulitang Regulates ERK/CREB Signaling Pathway to Ameliorate Hippocampal Nerve Injury in Mouse Model of Depression
Shiyu JI ; Li WANG ; Zhuo ZHANG ; Yingzhe GAO ; Zefeng ZHANG ; Siyu CHEN ; Guangjing XIE ; Ping WANG ; Panpan HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):1-9
ObjectiveTo investigate the effects of Chaihu and Longgu Mulitang (CLMT) on hippocampal neural damage in the mouse model of depression via the extracellular signal-regulated protein kinase (ERK)/cAMP-response element-binding protein (CREB) signaling pathway. MethodsSeventy-eight male C57BL/6 mice were randomly allocated into normal control, model, low/medium/high-dose (2.89, 5.78, and 11.56 g·kg-1, respectively) CLMT, and paroxetine (10 mg·kg-1) groups. A depression model was established by chronic unpredictable mild stress (CUMS) combined with social isolation. Behavioral tests were carried out to evaluate depressive-like behaviors. Hematoxylin-eosin staining and Nissl staining were performed to assess hippocampal morphology and neuronal damage. Immunofluorescence was employed to detect glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1). Real-time PCR was employed to measure the mRNA levels of ERK and CREB. Western blot was employed to determine the expression of ERK/CREB pathway proteins and brain-derived neurotrophic factor (BDNF) in the hippocampal tissue. Molecular Operating Environment (MOE) software was used for molecular docking to evaluate the interactions between CLMT components and target proteins. ResultsCompared with the normal control group, the model group showed decreased sucrose preference (P0.01), increased tail-suspension immobility time (P0.01), decreased activity in the central region of the open field test (P0.01), and decreased activity in the middle and open-arm region of the elevated plus maze test (P0.01). The hippocampal area in the model group showed wrinkled cells and a reduction in the number of cells, neurons with reduced sizes and Nissl bodies, enhanced fluorescence intensity of GFAP and Iba1 (P0.01), and down-regulated expression of phosphorylated (p)-ERK, p-CREB, and BDNF (P0.05, P0.01) and mRNA levels of ERK and CREB (P0.01). Compared with the model group, the CLMT group showed increased body weight (P0.05, P0.01), restored cell morphology, with only a small number of ruptured cells, normal neuronal structure and morphology with obvious nuclei and abundant Nissl bodies, weakened fluorescence intensity of GFAP and Iba1 (P0.05, P0.01), up-regulated mRNA levels of ERK and CREB (P0.05, P0.01) and protein levels of phosphorylated (p)-ERK, p-CREB, and BDNF in the hippocampal tissue (P0.05, P0.01). The results of molecular docking indicated that nine active ingredients in CLMT had good binding affinity with ERK and CREB. ConclusionCLMT may ameliorate the hippocampal nerve injury in the mouse model of depression by regulating the ERK/CREB pathway.
4.Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network.
Mengmeng HUANG ; Mingfeng JIANG ; Yang LI ; Xiaoyu HE ; Zefeng WANG ; Yongquan WU ; Wei KE
Journal of Biomedical Engineering 2025;42(1):49-56
Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F 1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.
Humans
;
Arrhythmias, Cardiac/diagnosis*
;
Algorithms
;
Electrocardiography/methods*
;
Neural Networks, Computer
;
Signal Processing, Computer-Assisted
;
Deep Learning
;
Classification Algorithms
5.Effectiveness of three-dimensional printing-assisted vascularized fibular graft for repairing metatarsal defects.
Rong ZHOU ; Jihui JU ; Liang YANG ; Liping GUO ; Yucheng LIU ; Chao GENG ; Zhongzheng LIU ; Zefeng NIU ; Shuai DONG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(11):1447-1451
OBJECITVE:
To investigate the effectiveness of three-dimensional (3D) printing-assisted vascularized fibular graft for repairing metatarsal defects.
METHODS:
Between November 2021 and February 2024, 11 patients with varying degrees of metatarsal defects caused by trauma were treated. There were 10 males and 1 female, aged 22-67 years, with a mean age of 51.2 years. The defect locations were as follows: the first metatarsal in 4 cases, the fifth metatarsal in 2 cases, the first and the second metatarsals in 1 case, the first to third metatarsals in 1 case, the third and the fourth metatarsals in 1 case, the third to fifth metatarsals in 1 case, and the first to fifth metatarsals in 1 case. The preoperative American Orthopaedic Foot & Ankle Society (AOFAS) score was 67.0 (48.5, 72.5). Based on 3D-printed bilateral feet models and mirrored healthy-side foot arch angles for preoperative planning and design, the vascularized fibular graft was performed to repair the metatarsal defects. At last follow-up, the medial and lateral longitudinal arches of bilateral feet were measured on weight-bearing X-ray films, and functional assessment was conducted using the AOFAS score.
RESULTS:
All operations were successfully completed, with an operation time ranging from 180 to 465 minutes (mean, 246.8 minutes). All incisions healed by first intention, with no occurrence of osteomyelitis. All patients were followed up 6-22 months (mean, 10 months). X-ray film reviews showed bone graft healing in all cases, with a healing time of 3-6 months (mean, 5 months). All patients underwent internal fixator removal at 6-12 months after operation. At last follow-up, no significant difference was observed in the medial and lateral longitudinal arches between the healthy and affected feet ( P>0.05). The AOFAS score of the affected foot was 78.0 (73.5, 84.0), showing a significant improvement compared to the preoperative score ( P<0.05). The effectiveness was rated as excellent in 1 case, good in 7 cases, fair in 2 cases, and poor in 1 case. Linear scarring remained at the donor site, with no functional impairment in adjacent joint movement.
CONCLUSION
3D printing-assisted vascularized fibular graft for repairing metatarsal defects can effectively restore the physiological angle of the foot arch, facilitate the recovery of weight-bearing alignment, promote good bone healing, and yield satisfactory clinical outcomes.
Humans
;
Printing, Three-Dimensional
;
Middle Aged
;
Male
;
Fibula/blood supply*
;
Female
;
Metatarsal Bones/injuries*
;
Adult
;
Bone Transplantation/methods*
;
Aged
;
Plastic Surgery Procedures/methods*
;
Young Adult
;
Treatment Outcome
6.Dissecting Social Working Memory: Neural and Behavioral Evidence for Externally and Internally Oriented Components.
Hanxi PAN ; Zefeng CHEN ; Nan XU ; Bolong WANG ; Yuzheng HU ; Hui ZHOU ; Anat PERRY ; Xiang-Zhen KONG ; Mowei SHEN ; Zaifeng GAO
Neuroscience Bulletin 2025;41(11):2049-2062
Social working memory (SWM)-the ability to maintain and manipulate social information in the brain-plays a crucial role in social interactions. However, research on SWM is still in its infancy and is often treated as a unitary construct. In the present study, we propose that SWM can be conceptualized as having two relatively independent components: "externally oriented SWM" (e-SWM) and "internally oriented SWM" (i-SWM). To test this external-internal hypothesis, participants were tasked with memorizing and ranking either facial expressions (e-SWM) or personality traits (i-SWM) associated with images of faces. We then examined the neural correlates of these two SWM components and their functional roles in empathy. The results showed distinct activations as the e-SWM task activated the postcentral and precentral gyri while the i-SWM task activated the precuneus/posterior cingulate cortex and superior frontal gyrus. Distinct multivariate activation patterns were also found within the dorsal medial prefrontal cortex in the two tasks. Moreover, partial least squares analyses combining brain activation and individual differences in empathy showed that e-SWM and i-SWM brain activities were mainly correlated with affective empathy and cognitive empathy, respectively. These findings implicate distinct brain processes as well as functional roles of the two types of SWM, providing support for the internal-external hypothesis of SWM.
Humans
;
Memory, Short-Term/physiology*
;
Male
;
Female
;
Empathy/physiology*
;
Young Adult
;
Magnetic Resonance Imaging
;
Adult
;
Brain/diagnostic imaging*
;
Brain Mapping
;
Facial Expression
;
Social Behavior
;
Facial Recognition/physiology*
;
Social Perception
;
Personality/physiology*
7.Microbiome and its genetic potential for carbon fixation in small urban wetlands.
Minghai LIN ; Lianxin HU ; Liping HAO ; Zefeng WANG
Chinese Journal of Biotechnology 2025;41(6):2415-2431
Small urban wetlands are widely distributed and susceptible to human activities, serving as important sources and sinks of carbon. Microorganisms play a crucial role in carbon cycle, while limited studies have been conducted on the microbial diversity in small urban wetlands and the functions of microbiome in carbon fixation and metabolism. To probe into the microbiome-driven carbon cycling in small urban wetlands and dissect the composition and functional groups of microbiome, we analyzed the relationships between the microbiome structure, element metabolism pathways, and habitat physicochemical properties in sediment samples across three small wetlands in Huzhou City, and compared them with natural wetlands in the Zoige wetland. High-throughput sequencing of 16S rRNA gene amplicons and metagenomics was employed to determine the species and functional groups. Sixty medium to high-quality metagenome-assembled genomes (MAGs) were constructed, including 55 bacterial and 5 archaeal taxa, and their potential in driving elemental cycles were analyzed, with a focus on carbon fixation. Several bacterial species were found to encode a nearly complete carbon fixation pathway, including the Calvin cycle, the reductive tricarboxylic acid cycle, the Wood-Ljungdahl pathway, and the reductive glycine pathway. There were several potential novel carbon-fixing bacterial members, such as those belonging to Syntrophorhabdus (Desulfobacterota) and UBA4417 (Bacteroidetes), which had high relative abundance in the wetland microbiome. Unveiling the genetic potential of these functional groups to facilitate element cycling is of great scientific importance for enhancing the carbon sequestration capacity of small urban wetlands.
Wetlands
;
Microbiota/genetics*
;
Carbon Cycle/genetics*
;
Bacteria/classification*
;
RNA, Ribosomal, 16S/genetics*
;
China
;
Cities
;
Geologic Sediments/microbiology*
;
Archaea/classification*
;
Metagenomics
;
Metagenome
8.Combination of Ranibizumab and Dexamethasone intravitreal implant for macular edema secondary to retinal vein occlusion
Jing ZHU ; Chaoqiong WU ; Zefeng XIAO
International Eye Science 2024;24(1):117-121
AIM: To compare the differences in the efficacy and safety of combination of intravitreal dexamethasone(Ozurdex)and ranibizumab or monotherapy of ranibizumab in eyes with macular edema secondary to retinal vein occlusion(RVO-ME).METHODS: Patients diagnosed with non-ischemic RVO-ME by fluorescein fundus angiography in our hospital from June 2020 to December 2022 were selected. All patients were initially treated with intravitreal injection of ranibizumab(0.5 mg), and 42 patients(42 eyes)who had central retinal thickness(CRT)≥300 μm after 2 wk were included. They were randomly divided into combined treatment group and monotherapy group. The combined treatment group(21 eyes)received Ozurdex intravitreal injection immediately, while the monotherapy group(21 eyes)was treated with ranibizumab intravitreal injection by 3+pro re nata(PRN). The changes of best corrected visual acuity(BCVA), CRT, and intraocular pressure before and at 2 wk, 1, 2, 3, 4, 5, and 6 mo after treatment were recorded, and the ocular or systemic complications were observed.RESULTS:The BCVA and CRT of all patients at 2 wk, 1, 2, 3, 4, 5, and 6 mo after treatment were significantly better than those before treatment(all P<0.01). There were statistical significance in the BCVA and CRT between two groups at 2 and 3 mo after treatment(all P<0.05). The most significant increase of BCVA in the combined treatment group occurred at 2 mo after treatment. The mean recurrence time of macular edema in the monotherapy group was 1.45±0.53 mo, with 4.21±0.78 injection times of ranibizumab. None of the patients showed serious complications after treatment. The most common complications in the combined treatment group were subconjunctival hemorrhage and elevated intraocular pressure, which were manageable with topical ocular hypotensive agents, and no patient required antiglaucoma or cataract surgery.CONCLUSION: Compared with monotherapy of ranibizumab, intravitreal injection of dexamethasone combined with ranibizumab can significantly improve the visual acuity and effectively reduce the macular edema in the treatment of RVO-ME, with a long duration of efficacy and less intravitreal injection of drugs.
9.Advances in research on relationship between indoor artificial light at night and human health
Fengrui ZHU ; Zefeng KANG ; Furong DENG
Journal of Environmental and Occupational Medicine 2024;41(2):214-218
With the acceleration of global urbanization, the intensity and coverage of artificial light at night (ALAN) are increasing, and its service duration is obviously prolonged. ALAN exposure is not only related to the occurrence and development of cardiovascular, metabolic, sleep, myopia, and mental diseases, but also may induce cancer. Previous studies have focused on the health effects of outdoor ALAN, but people spend more than 80% of their lives indoors, hence it is of great significance to understand the relationship between indoor ALAN and population health to create a healthy indoor environment and protect the health of the population.
10.Regulatory role of PI3K/AKT pathway in diabetic retinopathy
Baohua LI ; Zefeng KANG ; Xinyue HOU ; Jianquan WANG ; Man SONG ; Danyu LI ; Mengyu LIU ; Xin YAN
International Eye Science 2024;24(9):1426-1431
Diabetic retinopathy(DR)is one of the major complications of diabetes mellitus, characterized by neurodegeneration and microangiopathy. Currently, the treatment of DR is mainly focused on the management of late complications and has not achieved the desired clinical outcome. Evidence suggests that the PI3K/AKT pathway, as one of the important intracellular signaling pathways during the cell cycle, is involved in the whole process of DR pathogenesis. This article focuses on the structural composition, activation and blocking pathways, conduction pathways, regulatory mechanisms and biological functions of the PI3K/AKT signaling pathway to review its role in DR and to explore the potential of targeting the PI3K/AKT pathway for the treatment of DR.

Result Analysis
Print
Save
E-mail