1.1-Methoxycarbony-β-carboline from Picrasma quassioides exerts anti-angiogenic properties in HUVECs in vitro and zebrafish embryos in vivo.
Qing-Hua LIN ; Wei QU ; Jian XU ; Feng FENG ; Ming-Fang HE
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):599-609
Angiogenesis is a crucial process in the development of inflammatory diseases, including cancer, psoriasis and rheumatoid arthritis. Recently, several alkaloids from Picrasma quassioides had been screened for angiogenic activity in the zebrafish model, and the results indicated that 1-methoxycarbony-β-carboline (MCC) could effectively inhibit blood vessel formation. In this study, we further confirmed that MCC can inhibit, in a concentration-dependent manner, the viability, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, as well as the regenerative vascular outgrowth of zebrafish caudal fin in vivo. In the zebrafish xenograft assay, MCC inhibited the growth of tumor masses and the metastatic transplanted DU145 tumor cells. The proteome profile array of the MCC-treated HUVECs showed that MCC could down-regulate several angiogenesis-related self-secreted proteins, including ANG, EGF, bFGF, GRO, IGF-1, PLG and MMP-1. In addition, the expression of two key membrane receptor proteins in angiogenesis, TIE-2 and uPAR, were also down-regulated after MCC treatment. Taken together, these results shed light on the potential therapeutic application of MCC as a potent natural angiogenesis inhibitor via multiple molecular targets.
Angiogenesis Inhibitors
;
chemistry
;
pharmacology
;
Animals
;
Carbolines
;
chemistry
;
pharmacology
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Epidermal Growth Factor
;
genetics
;
metabolism
;
Fibroblast Growth Factors
;
genetics
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Neovascularization, Physiologic
;
drug effects
;
Picrasma
;
chemistry
;
Plant Extracts
;
chemistry
;
pharmacology
;
Receptor, TIE-2
;
genetics
;
metabolism
;
Zebrafish
;
embryology
2.Retinoic acid signal pathway regulation of zebra fish tooth development through manipulation of the differentiation of neural crest.
Xin LIU ; Xing HUANG ; Zhiyun XU ; Deqin YANG
West China Journal of Stomatology 2016;34(2):115-120
OBJECTIVETo investigate the mechanism of retinoic acid (RA) signal in dental evolution, RA is used to explore the influence of the mechanism on neural crest's migration during the early stage of zebra fish embryos.
METHODSWe divided embryos of wild type and transgenic line zebra fish into three groups. 1 x 10(-7) to 6 x 10(-7) mol x L(-1) RA and 1 x 10(-7) mo x L(-1) 4-diethylaminobenzaldehyde (DEAB) were added into egg water at 24 hpf for 9 h. Dimethyl sulfoxid (DMSO) with the concentration was used as control group. Then, antisense probes of dlx2a, dlx2b, and barxl were formulated to perform whole-mount in situ hybridization to check the expressions of the genes in 48 hpf to 72 hpf embryos. We observed fluorescence of transgenic line in 4 dpf embryos.
RESULTSWe obtained three mRNA probes successfully. Compared with DMSO control group, a low concentration (1 x 10(-7) mol x L(-1)) of RA could up-regulate the expression of mRNA (barx1, dlx2a) in neural crest. Obvious migration trend was observed toward the pharyngeal arch in which teeth adhered. Transgenic fish had spreading fluorescence tendency in pharyngeal arch. However, a high concentration (4 x 10(-7) mol x L(-1)) of RA malformed the embryos and killed them after treatment. One third of the embryos of middle concentration (3 x 10(-7) mo x L(-1)) exhibited delayed development. DEAB resulted in neural crest dysplasia. The expression of barxl and dlx2a were suppressed, and the appearance of dlx2b in tooth was delayed.
CONCLUSIONRA signal pathway can regulate the progenitors of tooth by controlling the growth of the neural crest and manipulating tooth development
Animals ; Branchial Region ; Cell Differentiation ; drug effects ; Embryo, Nonmammalian ; drug effects ; embryology ; metabolism ; In Situ Hybridization ; Neural Crest ; drug effects ; Odontogenesis ; Signal Transduction ; Tooth ; drug effects ; embryology ; metabolism ; Tretinoin ; pharmacology ; Zebrafish ; embryology ; genetics ; metabolism
3.Effects of Exogenous Carbon Monoxide Releasing Molecules on the Development of Zebrafish Embryos and Larvae.
Jing E SONG ; Jing SI ; ; Rong ZHOU ; ; Hua Peng LIU ; Zhen Guo WANG ; Lu GAN ; ; Fang GUI ; Bin LIU ; Hong ZHANG ;
Biomedical and Environmental Sciences 2016;29(6):453-456
The use of exogenous carbon monoxide releasing molecules (CORMs) provides promise for clinical application; however, the hazard potential of CORMs in vivo remains poorly understood. The developmental toxicity of CORM-3 was investigated by exposure to concentrations ranging from 6.25 to 400 μmol/L during 4-144 h post fertilization. Toxicity endpoints of mortality, spontaneous movement, heart rate, hatching rate, malformation, body length, and larval behavior were measured. CORM-3 disrupted the progression of zebrafish larval development at concentrations exceeding 50 μmol/L, resulting in embryonic developmental toxicity.
Animals
;
Carbon Monoxide
;
pharmacology
;
Cardiotonic Agents
;
toxicity
;
Dose-Response Relationship, Drug
;
Embryo, Nonmammalian
;
drug effects
;
Embryonic Development
;
drug effects
;
Organometallic Compounds
;
toxicity
;
Zebrafish
;
embryology
;
metabolism
4.Myeloid and erythroid hematopoietic transcription factor expression decline after knockdown ofgenes in zebrafish embryos.
Shifang HOU ; Zhihua WANG ; Jun WANG ; Zhixu HE ; Liping SHU ;
Journal of Zhejiang University. Medical sciences 2016;45(6):620-625
To investigate the effect ofgene down-regulation on early hematopoietic development of zebrafish.Phosphorodiamidate morpholino oligomer (PMO) technology was used to downregulategene expression in Zebrafish. Zebrafish embryos injected phosphorodiamidate morpholino antisense oligonucleotide ofgene mRNA by microinjection at unicellular stage were taken as the experimental group, and those injected meaningless phosphorodiamidate morpholino antisense oligonucleotide were taken as the control. The embryos were collected at 18, 24, 30 and 36 hpf after the fertilization. The real-time fluorescent quantitative PCR (RT-PCR) and whole embryohybridization methods were used to detect the expression of myeloid hematopoietic transcription factorand erythroid hematopoietic transcription factorin zebrafish.RT-PCR showed that the expressions ofanddecreased in the experimental group compared with the control group (all<0.05). Whole embryohybridization showed that the blue-black positive hybridization signals ofandin experimental group were shallow than those in the control group.Myeloid hematopoietic and erythroid hematopoietic of zebrafish are blocked with the downregulation ofgene.
Animals
;
Down-Regulation
;
genetics
;
Embryo, Nonmammalian
;
physiopathology
;
GATA1 Transcription Factor
;
genetics
;
metabolism
;
Gene Knockdown Techniques
;
Hematopoiesis
;
In Situ Hybridization
;
Lamin Type A
;
genetics
;
physiology
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Trans-Activators
;
genetics
;
metabolism
;
Zebrafish
;
embryology
;
genetics
5.Toxic effects of strychnine and strychnine N-oxide on zebrafish embryos.
Yu LI ; Xu QI ; Yu-Wei YANG ; Yang PAN ; Hui-Min BIAN
Chinese Journal of Natural Medicines (English Ed.) 2014;12(10):760-767
AIM:
The application of strychnine (S) is limited due to its toxicity; strychnine N-oxide (SNO) is a derivative of strychnine. The aim was to employ zebrafish embryos to investigate and compare the developmental toxicity induced by S and SNO.
METHODS:
The toxicity of S and SNO was examined through the hatching rate and survival rate. Morphological changes of the zebrafish were observed with a dissecting microscope. Apoptosis was detected through acridine orange (AO) staining and flow cytometry. Apoptotic genes were measured by RT-PCR.
RESULTS:
Embryo malformation was observed in the embryos exposed to S at 200 μmol·L(-1). When SNO concentration was increased to 1 mmol·L(-1), scoliolosis, and pericardial edema could be seen in some embryos. Results from fluorescence microscopy and flow cytometry analysis showed that S at 200 μmol·L(-1) induced apoptosis, whereas the apoptotic rate in the SNO-treated group (200 μmol·L(-1)) was much lower than that in the S group. RT-PCR analysis showed that p53 mRNA expression and the ratio of Bax/Bcl-2 in the S group were significantly altered compared with the control group (*P < 0.05). Moreover, Bax mRNA expression in both S and SNO group were significantly different from that in the control group (**P < 0.01).
CONCLUSION
These results lead to the conclusion that SNO has significantly lower toxicity than S in zebrafish embryos.
Animals
;
Apoptosis
;
drug effects
;
Cyclic N-Oxides
;
toxicity
;
Drugs, Chinese Herbal
;
toxicity
;
Female
;
Male
;
Oxidative Stress
;
drug effects
;
Proto-Oncogene Proteins c-bcl-2
;
Strychnine
;
analogs & derivatives
;
toxicity
;
Strychnos
;
adverse effects
;
chemistry
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
;
Zebrafish
;
embryology
;
genetics
;
metabolism
;
Zebrafish Proteins
;
genetics
;
metabolism
6.Glyceollins, a novel class of soybean phytoalexins, inhibit SCF-induced melanogenesis through attenuation of SCF/c-kit downstream signaling pathways.
Experimental & Molecular Medicine 2013;45(4):e17-
The anti-melanogenesis effect of glyceollins was examined by melanin synthesis, tyrosinase activity assay in zebrafish embryos and in B16F10 melanoma cells. When developing zebrafish embryos were treated with glyceollins, pigmentation of the embryos, melanin synthesis and tyrosinase activity were all decreased compared with control zebrafish embryos. In situ expression of a pigment cell-specific gene, Sox10, was dramatically decreased by glyceollin treatment in the neural tubes of the trunk region of the embryos. Stem cell factor (SCF)/c-kit signaling pathways as well as expression of microphthalmia-associated transcription factor (MITF) were determined by western blot analysis. Glyceollins inhibited melanin synthesis, as well as the expression and activity of tyrosinase induced by SCF, in a dose-dependent manner in B16F10 melanoma cells. Pretreatment of B16F10 cells with glyceollins dose-dependently inhibited SCF-induced c-kit and Akt phosphorylation. Glyceollins significantly impaired the expression and activity of MITF. An additional inhibitory function of glyceollins was to effectively downregulate intracellular cyclic AMP levels stimulated by SCF in B16F10 cells. Glyceollins have a depigmentation/whitening activity in vitro and in vivo, and that this effect may be due to the inhibition of SCF-induced c-kit and tyrosinase activity through the blockade of downstream signaling pathway.
Animals
;
Embryo, Nonmammalian/drug effects
;
Melanins/*biosynthesis
;
Melanoma, Experimental/metabolism/pathology
;
Mice
;
Monophenol Monooxygenase/metabolism
;
Phosphorylation/drug effects
;
Pigmentation/drug effects
;
Proto-Oncogene Proteins c-kit/*metabolism
;
Pterocarpans/chemistry/*pharmacology
;
SOXE Transcription Factors/metabolism
;
Sesquiterpenes/chemistry/*pharmacology
;
Signal Transduction/*drug effects
;
Soybeans/*chemistry
;
Stem Cell Factor/*pharmacology
;
Zebrafish/embryology/metabolism
8.Retinol dehydrogenase, RDH1l, is essential for the heart development and cardiac performance in zebrafish.
Wei WANG ; Li-feng ZHANG ; Yong-hao GUI ; Hou-yan SONG
Chinese Medical Journal 2013;126(4):722-728
BACKGROUNDRetinoic acid (RA) is a potent signaling molecule that plays pleiotropic roles in patterning, morphogenesis, and organogenesis during embryonic development. The synthesis from retinol (vitamin A) to retinoic acid requires two sequential oxidative steps. The first step involves the oxidation of retinol to retinal through the action of retinol dehydrogenases. Retinol dehydrogenases1l (RDH1l) is a novel zebrafish retinol dehydrogenase. Herein we investigated the role of zebrafish RDH1l in heart development and cardiac performance in detail.
METHODSRDH1l specific morpholino was used to reduce the function of RDH1l in zebrafish. The gene expressions were observed by using whole mount in situ hybridization. Heart rates were observed and recorded under the microscope from 24 to 72 hours post fertilization (hpf). The cardiac performance was analyzed by measuring ventricular shortening fraction (VSF).
RESULTSThe knock-down of RDH1l led to abnormal neural crest cells migration and reduced numbers of neural crest cells in RDH1l morphant embryos. The reduced numbers of cardiac neural crest cells also can be seen in RDH1l morphant embryos. Furthermore, the morpholino-mediated knock-down of RDH1l resulted in the abnormal heart loop. The left-right determining genes expression pattern was altered in RDH1l morphant embryos. The impaired cardiac performance was observed in RDH1l morphant embryos. Taken together, these data demonstrate that RDH1l is essential for the heart development and cardiac performance in zebrafish.
CONCLUSIONSRDH1l plays a important role in the neural crest cells development, and then ultimately affects the heart loop and cardiac performance. These results show for the first time that an enzyme involved in the retinol to retinaldehyde conversion participate in the heart development and cardiac performance in zebrafish.
Alcohol Oxidoreductases ; genetics ; metabolism ; Animals ; Animals, Genetically Modified ; Heart ; embryology ; Zebrafish ; Zebrafish Proteins ; genetics ; metabolism
9.AKAP12 regulates vascular integrity in zebrafish.
Hyouk Bum KWON ; Yoon Kyung CHOI ; Jhong Jae LIM ; Seung Hae KWON ; Song HER ; Hyun Jin KIM ; Kyung Joon LIM ; Jong Chan AHN ; Young Myeong KIM ; Moon Kyung BAE ; Jeong Ae PARK ; Chul Ho JEONG ; Naoki MOCHIZUKI ; Kyu Won KIM
Experimental & Molecular Medicine 2012;44(3):225-235
The integrity of blood vessels controls vascular permeability and extravasation of blood cells, across the endothelium. Thus, the impairment of endothelial integrity leads to hemorrhage, edema, and inflammatory infiltration. However, the molecular mechanism underlying vascular integrity has not been fully understood. Here, we demonstrate an essential role for A-kinase anchoring protein 12 (AKAP12) in the maintenance of endothelial integrity during vascular development. Zebrafish embryos depleted of akap12 (akap12 morphants) exhibited severe hemorrhages. In vivo time-lapse analyses suggested that disorganized interendothelial cell-cell adhesions in akap12 morphants might be the cause of hemorrhage. To clarify the molecular mechanism by which the cell-cell adhesions are impaired, we examined the cell-cell adhesion molecules and their regulators using cultured endothelial cells. The expression of PAK2, an actin cytoskeletal regulator, and AF6, a connector of intercellular adhesion molecules and actin cytoskeleton, was reduced in AKAP12-depleted cells. Depletion of either PAK2 or AF6 phenocopied AKAP12-depleted cells, suggesting the reduction of PAK2 and AF6 results in the loosening of intercellular junctions. Consistent with this, overexpression of PAK2 and AF6 rescued the abnormal hemorrhage in akap12 morphants. We conclude that AKAP12 is essential for integrity of endothelium by maintaining the expression of PAK2 and AF6 during vascular development.
A Kinase Anchor Proteins/*genetics/metabolism
;
Animals
;
Blood Vessels/abnormalities/*embryology/metabolism
;
Cell Cycle Proteins/genetics/metabolism
;
Down-Regulation
;
Embryo, Nonmammalian/abnormalities/*blood supply/embryology/metabolism
;
Gene Deletion
;
*Gene Expression Regulation, Developmental
;
Hemorrhage/*embryology/genetics/metabolism
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Intercellular Junctions/genetics/metabolism/ultrastructure
;
Kinesin/genetics/metabolism
;
Myosins/genetics/metabolism
;
Zebrafish/*embryology/genetics
;
p21-Activated Kinases/genetics/metabolism
10.Effect and mechanism of curcumol on angiogenesis activity of zebrafishes.
Lili TIAN ; Jianyong DONG ; Changjiang HUANG
China Journal of Chinese Materia Medica 2012;37(12):1822-1825
OBJECTIVETo conduct a preliminary study on the effect of curcumol in promoting angiogenesis activity and its mechanism in zebrafishes, in order to provide basis for clinical prescription.
METHODZebrafishes biological model was established to, observe curcumol's effect on embryo blood vessel growth, blood vessel regeneration of adult fishes after tail-cutting and tissue regeneration of fish fries after tail-cutting. The relative fluorescence quantitative PCR method was adopted to determine the gene expression of vascular endothelial growth factor (VEGFA) and receptor VEGFR2 of fish fries after tail-cutting.
RESULTCurcumol contributed to angiogenesis of intersegmental blood vessels in zebrafishes embryos and speed up regeneration of blood vessels in adult fishes after tail-cutting. Furthermore, curcumol can increase the gene expression of VEGFA and VEGFR2 in fish fries.
CONCLUSIONCurcumol can promote angiogenesis in zebrafishes, and enhance the gene expression of VEGFA and VEGFR2 in fish fries after tail-cutting and speed up the regeneration of their tails.
Animals ; Embryo, Nonmammalian ; blood supply ; drug effects ; metabolism ; Gene Expression Regulation ; drug effects ; Neovascularization, Physiologic ; drug effects ; Sesquiterpenes ; pharmacology ; Vascular Endothelial Growth Factor A ; genetics ; Vascular Endothelial Growth Factor Receptor-2 ; genetics ; Zebrafish ; embryology ; genetics ; physiology

Result Analysis
Print
Save
E-mail