1.Mechanism of Qingrun Prescription-containing Serum Improving Insulin Resistance in HepG2 Cells via Branched-chain α-keto Acid Dehydrogenase Regulation of Branched-chain Amino Acids (BCAAs)/mTOR Pathway
Xiangwei BU ; Xiaohui HAO ; Runyun ZHANG ; Meizhen ZHANG ; Ze WANG ; Haoshuo WANG ; Jie WANG ; Qing NI ; Lan LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):90-98
ObjectiveTo investigate the effect of Qingrun prescription(QRP)-containing serum on improving insulin resistance in HepG2 cells and its potential mechanisms. MethodsAn insulin resistance model was established in HepG2 cells with 1×10-6 mol·L-1 insulin. Branched-chain α-keto acid dehydrogenase (BCKDH) gene silencing was achieved using siRNA, and the cells were divided into 8 groups: normal group, model group (1×10-6 mol·L-1 insulin), metformin group (1 mmol·L-1 metformin), high-, medium-, and low-dose QRP groups (20%, 10%, and 5% QRP-containing serum, respectively), QRP + siRNA-silenced BCKDH (si-BCKDH) group (10% QRP-containing serum + si-BCKDH), and QRP + si-NC group (10% QRP-containing serum + si-NC). Glucose levels in the supernatant were measured with a glucose assay kit, while glycogen content was assessed using a glycogen assay kit. Levels of branched-chain amino acids (BCAAs) and branched-chain keto acids (BCKAs) were determined using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). mRNA transcription and protein expression levels of BCKDH, dishevelled, Egl-10, and pleckstrin (DEP) domain-containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were detected using real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot. ResultsCompared to the normal group, the model group exhibited significantly decreased glucose consumption and glycogen content, increased levels of BCAAs and BCKAs, downregulated expression of BCKDH and DEPTOR, and upregulated mTOR and S6K1 expression (P<0.01). In comparison to the model group, QRP treatment at all doses significantly enhanced glucose consumption and glycogen content while reducing BCAAs and BCKAs levels (P<0.01). The high- and medium-dose QRP groups demonstrated significant upregulation of BCKDH mRNA transcription and protein expression, as well as DEPTOR mRNA transcription. Moreover, the DEPTOR protein expression level was significantly increased in high-, medium-, and low-dose QRP groups, while mTOR and S6K1 mRNA and protein expression levels were markedly downregulated (P<0.05, P<0.01). Compared to the QRP + si-NC group, the QRP + si-BCKDH group exhibited increased BCAAs and BCKAs levels, significantly decreased BCKDH mRNA transcription and protein expression, downregulated DEPTOR mRNA and protein expression, and upregulated mTOR and S6K1 mRNA and protein expression (P<0.05, P<0.01). ConclusionQRP may improve insulin resistance by reprogramming BCAAs metabolism. This effect involves upregulating BCKDH, reducing BCAAs and BCKAs levels, and suppressing the mTOR pathway activation.
2.Research progress on the role and mechanism of Wnt signaling pathway in the pathogenesis of myopia
Ze WANG ; Ruiping XIE ; Xue LIU
International Eye Science 2025;25(1):99-103
Myopia is an increasingly prevalent public health concern globally, with a complex pathogenesis involving the interplay of multiple signaling pathways and genes. The Wnt signaling pathway plays a crucial role in biological processes such as cell proliferation, differentiation, apoptosis, and tissue remodeling, and its role in myopia development has garnered significant attention in recent years. Studies have demonstrated that the Wnt signaling pathway influences the occurrence and progression of myopia by regulating the proliferation, differentiation, and apoptosis of retinal cells(including RPE cells and ipRGCs), as well as the proliferation of scleral fibroblasts and the expression of extracellular matrix components(such as type I collagen), thereby affecting scleral remodeling and axial length elongation. This paper summarizes the roles of the Wnt signaling pathway in myopia development within different ocular tissues(retina and sclera)and explores potential myopia prevention and treatment strategies based on this pathway, providing insights for further research and clinical management of myopia.
3.Metabolomics combined with network pharmacology reveals mechanism of Jiaotai Pills in treating depression.
Guo-Liang DAI ; Ze-Yu CHEN ; Yan-Jun WANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Bing-Ting SUN ; Xiao-Yong WANG ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(5):1340-1350
This study aims to explore the mechanism of Jiaotai Pills in treating depression based on metabolomics and network pharmacology. The chemical constituents of Jiaotai Pills were identified by UHPLC-Orbitrap Exploris 480, and the targets of Jiaotai Pills and depression were retrieved from online databases. STRING and Cytoscape 3.7.2 were used to construct the protein-protein interaction network of core targets of Jiaotai Pills in treating depression and the "compound-target-pathway" network. DAVID was used for Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses of the core targets. The mouse model of depression was established with chronic unpredictable mild stress(CUMS) and treated with different doses of Jiaotai Pills. The behavioral changes and pathological changes in the hippocampus were observed. UHPLC-Orbitrap Exploris 120 was used for metabolic profiling of the serum, from which the differential metabolites and related metabolic pathways were screened. A "metabolite-reaction-enzyme-gene" network was constructed for the integrated analysis of metabolomics and network pharmacology. A total of 34 chemical components of Jiaotai Pills were identified, and 143 core targets of Jiaotai Pills in treating depression were predicted, which were mainly involved in the arginine and proline, sphingolipid, and neurotrophin metabolism signaling pathways. The results of animal experiments showed that Jiaotai Pills alleviated the depression behaviors and pathological changes in the hippocampus of the mouse model of CUMS-induced depression. In addition, Jiaotai Pills reversed the levels of 32 metabolites involved in various pathways such as arginine and proline metabolism, sphingolipid metabolism, and porphyrin metabolism in the serum of model mice. The integrated analysis showed that arginine and proline metabolism, cysteine and methionine metabolism, and porphyrin metabolism might be the key pathways in the treatment of depression with Jiaotai Pills. In conclusion, metabolomics combined with network pharmacology clarifies the antidepressant mechanism of Jiaotai Pills, which may provide a basis for the clinical application of Jiaotai Pills in treating depression.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Depression/genetics*
;
Mice
;
Network Pharmacology
;
Metabolomics
;
Male
;
Disease Models, Animal
;
Humans
;
Protein Interaction Maps/drug effects*
;
Antidepressive Agents
4.Research on software development and smart manufacturing platform incorporating near-infrared spectroscopy for measuring traditional Chinese medicine manufacturing process.
Yan-Fei WU ; Hui XU ; Kai-Yi WANG ; Hui-Min FENG ; Xiao-Yi LIU ; Nan LI ; Zhi-Jian ZHONG ; Ze-Xiu ZHANG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(9):2324-2333
Process analytical technology(PAT) is a key means for digital transformation and upgrading of the traditional Chinese medicine(TCM) manufacturing process, serving as an important guarantee for consistent and controllable TCM product quality. Near-infrared(NIR) spectroscopy has become the core technology for measuring the TCM manufacturing process. By incorporating NIR spectroscopy into PAT and starting from the construction of a smart platform for the TCM manufacturing process, this paper systematically described the development history and innovative application of the combination of NIR spectroscopy with chemometrics in measuring the TCM manufacturing process by the research team over the past two decades. Additionally, it explored the application of a validation method based on accuracy profile(AP) in the practice of NIR spectroscopy. Furthermore, the software development progress driven by NIR spectroscopy supported by modeling technology was analyzed, and the prospect of integrating NIR spectroscopy in smart factory control platforms was exemplified with the construction practices of related platforms. By integrating with the smart platform, NIR spectroscopy could improve production efficiency and guarantee product quality. Finally, the prospect of the smart platform application in measuring the TCM manufacturing process was projected. It is believed that the software development for NIR spectroscopy and the smart manufacturing platform will provide strong technical support for TCM digitalization and industrialization.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/analysis*
;
Software
;
Medicine, Chinese Traditional
;
Quality Control
5.Medicinal properties and compatibility application of aromatic traditional Chinese medicine monomer components based on action of volatile components against viral pneumonia.
Yin-Ming ZHAO ; Lin-Yuan WANG ; Jian-Jun ZHANG ; Chun WANG ; Yi LI ; Xiao-Fang WU ; Qi ZHANG ; Xing-Yu ZHAO ; Lin-Ze LI ; Rui-Lin LYU
China Journal of Chinese Materia Medica 2025;50(8):2013-2021
Aromatic traditional Chinese medicine(TCM) has played an important role against epidemics and viruses, and volatile components are the main components that exert the pharmacological effects of aromatic TCM. By screening the related monomer components in aromatic TCM against epidemic and viruses and analyzing and endowing TCM with medicinal properties based on its clinical application and pharmacological research according to the theoretical thinking of TCM, the key technical issues of compatibility of TCM monomer components were solved from a theoretical perspective, providing new ideas and methods for screening raw materials and formulas for the development of new TCM drugs. Based on the conditions of antiviral activity, clinical application foundation, definite therapeutic effect, and high safety, a gradient screening of aromatic TCM was carried out. Firstly, 30 aromatic TCM were screened from anti-epidemic literature and clinical trial formulas, and seven volatile monomers were further screened from them. Then, four monomer components with significant effects, namely patchouli alcohol, carvacrol, p-cymene, and eucalyptol were screened. By adopting the "four-step method for a systematic study of TCM properties", the four monomer components were endowed with medicinal properties, and compatibility and combination studies were conducted to explore the theoretical basis of monomer formulas and form monomer formulas guided by TCM theory. The screening results of volatile monomers in aromatic TCM against viral pneumonia included patchouli alcohol, carvacrol, p-cymene, and eucalyptol. The medicinal properties and compatibility theory of volatile monomer components in TCM were explored. Patchouli alcohol was the main herb, with a cool and pungent nature. It entered the lung meridian to dispel evil Qi and has the effects of aromatization, detoxification, and epidemic prevention. Carvacrol was a minister drug with a cool and pungent taste. It had the effects of aromatizing, moistening, and dissolving the exterior, as well as strengthening the spleen and stomach. p-Cymene was an adjunctive medicine with a mild and pungent nature. It entered the lungs and kidneys and had the effects of aromatic purification, cough relief, and asthma relief. Eucalyptol was also an adjunctive medicine with a pungent and warm taste. It had the functions of aromatic purification, cough relief, phlegm reduction, and pain relief. The combination of the four medicines had the effects of aromatizing, moistening, detoxifying, and epidemic prevention, as well as relieving cough and asthma and strengthening the spleen and stomach. They were used to treat viral pneumonia caused by upper respiratory tract viral infections, with symptoms such as chest tightness, cough, wheezing, fatigue, nasal congestion, runny nose, nausea, and vomiting. This study has laid a literature and theoretical foundation for further drug efficacy verification experiments, compatibility efficacy experiments, and subsequent product development and clinical applications, and it serves as an innovative practice that combines literature research, theoretical research, experimental research, and clinical practice to develop new products.
Drugs, Chinese Herbal/therapeutic use*
;
Antiviral Agents/pharmacology*
;
Humans
;
Pneumonia, Viral/virology*
;
Medicine, Chinese Traditional
;
Volatile Organic Compounds/pharmacology*
;
Animals
6.Influence of eucalyptol on biological effects of spleen cold and spleen heat syndromes in rats and mechanism of regulating spleen channel with its warm nature based on TRP ion channel.
Xing-Yu ZHAO ; Yi LI ; Xiao-Fang WU ; Qi ZHANG ; Lin-Ze LI ; Yin-Ming ZHAO ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2025;50(8):2022-2031
This paper aims to investigate the influence of eucalyptol on the biological effects of spleen cold and spleen heat syndromes in rats and its regulation of transient receptor potential vanilloid 1(TRPV1), transient receptor potential melastatin 8(TRPM8), and uncoupling protein 1(UCP1), so as to explore the cold-heat properties of eucalyptol. Rats were randomly divided into groups as follows: blank group, spleen cold syndrome model group, spleen cold syndrome+Atractylodis Rhizoma group, spleen cold syndrome + low-dose eucalyptol group, and spleen cold syndrome+high-dose eucalyptol group, as well as blank group, spleen heat syndrome model group, spleen heat syndrome+Coptidis Rhizoma group, spleen heat syndrome + low-dose eucalyptol group, and spleen heat syndrome + high-dose eucalyptol group. Spleen cold and spleen heat syndromes were induced by disorders of hunger and satiety combined with bitter cold drugs, as well as a high-fat diet combined with liquor. Except for the blank and model groups, the other groups were administered once a day during the modeling process for 14 consecutive days. The general condition and body weight of rats in each group were observed, and the histopathological morphology of the gastric antrum and small intestine was observed by hematoxylin-eosin(HE) staining. The contents of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), triiodothyronine(T3), thyroxine(T4), Na~+-K~+-ATPase, total cholesterol(TC), triglyceride(TG), gastrin(GAS), motilin(MTL), D-xylose, and other related indices were detected in rats. The expression levels of TRPV1, TRPM8, and UCP1 in small intestine tissue of rats with spleen cold syndrome were detected. The results showed that eucalyptol had a certain degree of improvement in the overall state and body weight of rats with spleen cold syndrome. Compared with the spleen cold syndrome model group, high-dose eucalyptol significantly increased the levels of serum cAMP, cAMP/cGMP, TG, and TC in rats with spleen cold syndrome(P<0.05, P<0.01), decreased the content of cGMP, and significantly elevated the levels of gastrointestinal function-related indicators GAS, MTL, and D-xylose(P<0.05, P<0.01). Low-dose eucalyptol significantly increased the level of cAMP/cGMP in the serum and Na~+-K~+-ATPase levels in hepatic tissue(P<0.05, P<0.01), and significantly increased the levels of GAS and D-xylose(P<0.01). Eucalyptol showed similar effects to Atractylodis Rhizoma with a warm nature on rats with spleen cold syndrome. Compared with the spleen heat syndrome model group, the high-dose and low-dose eucalyptol groups showed a trend of increase in gastrointestinal indicators, with no significant changes in other indicators. In addition, high-dose eucalyptol increased the expression of TRPV1 and UCP1 and decreased the expression of TRPM8 in the small intestine tissue of rats with spleen cold syndrome. Eucalyptol could affect the cyclic nucleotide and material energy metabolism levels of rats with spleen cold syndrome and had a certain improvement effect on their gastrointestinal digestion and absorption function, thereby improving spleen cold syndrome. Eucalyptol had no significant improvement effect on rats with spleen heat syndrome, suggesting that eucalyptol may have a warm nature and regulate spleen meridians. It is speculated that eucalyptol may exhibit its medicinal properties by activating the TRPV1 pathway, promoting the expression of UCP1, and inhibiting the TRPM8 channel.
Animals
;
Rats
;
Spleen/metabolism*
;
Male
;
TRPV Cation Channels/genetics*
;
Rats, Sprague-Dawley
;
Eucalyptol/administration & dosage*
;
TRPM Cation Channels/genetics*
;
Uncoupling Protein 1/genetics*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Cold Temperature
;
Cyclic GMP/metabolism*
7.Medicinal properties and mechanisms of p-cymene with mild and warm nature based on deficiency-cold and deficiency-heat syndrome models.
Xiao-Fang WU ; Yi LI ; Xing-Yu ZHAO ; Lin-Ze LI ; Qi ZHANG ; Yin-Ming ZHAO ; Ying-Li ZHU ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2025;50(8):2032-2040
This paper aims to study the effect of p-cymene on mice with deficiency-cold syndrome induced by hydrocortisone and deficiency-heat syndrome induced by dexamethasone and explore the medicinal properties and mechanism of p-cymene with mild and warm nature based on the dominant characteristics of the two-way applicable conditions of mild drugs. A total of 80 KM mice were randomly divided into blank group, deficiency-cold syndrome model group, deficiency-cold syndrome + ginseng group, and deficiency-cold syndrome + low-dose and high-dose p-cymene groups, as well as blank group, deficiency-heat syndrome model group, deficiency-heat syndrome + American ginseng group, and deficiency-heat syndrome + low-dose and high-dose p-cymene groups. Hydrocortisone and dexamethasone solution were intragastrically administered for 14 consecutive days to prepare deficiency-cold syndrome and deficiency-heat syndrome models. Except for the blank group and the model group intragastrically administered with normal saline, the other groups were intragastrically administrated with drugs for 14 days. The levels of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), triiodothyronine(T3), thyroxine(T4), total cholesterol(TC), triglyceride(TG), immunoglobin G(IgG), and immunoglobin M(IgM) in serum, as well as the activity of Na~+-K~+-ATPase in liver tissue were detected. The expression of transient receptor potential melastatin 8(TRPM8), transient receptor potential vanilloid 1(TRPV1), and uncoupling protein 1(UCP1) in brown adipose tissue of deficiency-cold syndrome model after intervention with p-cymene was studied. The results showed that p-cymene could effectively improve the levels of cAMP, cAMP/cGMP, TC, IgM, and IgG in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and reduce the content of cGMP. The effects on T3, T4, and TG were not statistically significant. At the same time, p-cymene could reduce the levels of cAMP, cAMP/cGMP, and T4 in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and increase the levels of cGMP, IgM, and IgG, and it had no effect on T3, TC, and TG. In addition, p-cymene could up-regulate the expression of TRPV1 and UCP1 in brown fat of mice with deficiency-cold syndrome and down-regulate the expression of TRPM8. In summary, p-cymene could significantly regulate the syndrome indexes of mice with deficiency-cold syndrome, and some indexes of mice with deficiency-heat syndrome could be improved, but the effects on lipid metabolism and energy metabolism indexes were not obvious, indicating that the regulation effect of p-cymene on deficiency-cold syndrome model was more prominent and that the medicinal properties of p-cymene were mild and warm. The regulation of TRPV1/TRPM8/UCP1 channel expression may be the molecular biological mechanism of p-cymene with mild and warm nature affecting the energy metabolism of the body.
Animals
;
Cymenes
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Disease Models, Animal
;
Humans
;
Cyclic AMP/metabolism*
;
Monoterpenes/administration & dosage*
;
Liver/metabolism*
;
Cyclic GMP/metabolism*
;
TRPV Cation Channels/genetics*
;
Uncoupling Protein 1/genetics*
8.Molecular mechanism of Siwu Decoction in treating premature ovarian insufficiency based on mitophagy pathway modulated and mediated by estrogen receptor subtype.
Si CHEN ; Ze-Ye ZHANG ; Nan CONG ; Jiao-Jiao YANG ; Feng-Ming YOU ; Yao CHEN ; Ning WANG ; Pi-Wen ZHAO
China Journal of Chinese Materia Medica 2025;50(8):2173-2183
In this study, we explored the pharmacological effects of Siwu Decoction in treating premature ovarian insufficiency(POI) and its molecular mechanism based on the mitophagy pathway modulated and mediated by estrogen receptor(ER) subtypes. Female Balb/c mice were divided into a control group, model group, as well as high-dose and low-dose groups of Siwu Decoction. The POI mice model was constructed by intraperitoneal injection of cisplatin. The high-dose and low-dose groups of Siwu Decoction were administered intragastrically with Siwu Decoction each day for 14 days. During this period, we monitored the estrous cycle and body weight of the mice and calculated the ovarian index. The morphology of the ovaries was detected by hematoxylin-eosin(HE) staining, and the number of primordial follicles was counted. The apoptosis of the ovarian tissue was detected by TUNEL staining. The expression levels of anti-Müllerian hormone(AMH), apoptosis-associated and mitophagy-associated proteins, ER subtypes, and the expression levels of key proteins of its mediated molecular pathways were detected by Western blot and immunohistochemistry. KGN cells were divided into a control group, model group, Siwu Decoction group, and gene silencing group. The apoptosis model was induced by H_2O_2, and PTEN-induced putative kinase 1(PINK1) gene silencing was induced by siRNA transfection. The Siwu Decoction group and gene silencing group were added to the medium containing Siwu Decoction. Cell viability was detected by CCK-8 assay. Cell senescence was detected by senescence-associated-β-galactosidase. The expression levels of apoptosis-associated and mitophagy-associated proteins were detected by Western blot. The results of in vivo experiments showed that compared with the model group, the mice in the high-dose and low-dose groups of Siwu Decoction significantly recovered the rhythm of the estrous cycle, and the levels of ovarian index, number of primordial follicles, and expression of AMH, representative indexes of ovarian function, were significantly higher, suggesting that the level of ovarian function was significantly improved. The expression levels of the apoptosis-related proteins, cytochrome C(Cyt C), cysteinyl aspartate specific proteinase 3(caspase 3), B-cell lymphoma-2(Bcl-2)-associated X(Bax), and mitophagy-associated indicator(Beclin 1) were significantly decreased, and the expression levels of Bcl-2 was significantly elevated. The positive area of TUNEL was significantly reduced, suggesting that the apoptosis level of the ovaries was significantly reduced. The expression levels of PINK1, Parkin, and sequestosome 1(p62) were significantly reduced, suggesting that the level of ovarian mitophagy was significantly down-regulated. The expression levels of ERα and ERβ were significantly elevated, and the ratio of ERα/ERβ was significantly reduced. The expression levels of key proteins in the pathway, phosphoinositide 3-kinase(PI3K) and protein kinase B(Akt), were significantly reduced, suggesting that the regulation of ER subtypes and the mediation of PI3K/Akt pathway were the key mechanisms. In vitro experiments showed that compared with the model group, the proportion of senescent cells in the Siwu Decoction group was significantly reduced. Cyt C, caspase 3, Beclin 1, Parkin, and p62 were significantly reduced, which was in line with in vivo experimental results. The proportion of senescent cells and the expression level of the above proteins were further significantly reduced after PINK1 silencing. It can be seen that Siwu Decoction can regulate the expression level and proportion of ER subtypes in KGN cells, then mediate the PI3K/Akt pathway to inhibit excessive mitophagy and apoptosis, and exert therapeutic effects of POI.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitophagy/drug effects*
;
Primary Ovarian Insufficiency/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Humans
;
Receptors, Estrogen/genetics*
;
Apoptosis/drug effects*
;
Ovary/metabolism*
;
Signal Transduction/drug effects*
;
Anti-Mullerian Hormone/genetics*
9.Mechanism of matrine against senescence in human umbilical vein endothelial cells based on network pharmacology and experimental verification.
Dian LIU ; Zi-Ping XIANG ; Ze-Sen DUAN ; Xin-Ying LIU ; Xing WANG ; Hui-Xin ZHANG ; Chao WANG
China Journal of Chinese Materia Medica 2025;50(8):2260-2269
Utilizing network pharmacology, molecular docking, and cellular experimental validation, this study delved into the therapeutic efficacy and underlying mechanisms of matrine in combating senescence. Databases were utilized to predict targets related to the anti-senescence effects of matrine, resulting in the identification of 81 intersecting targets for matrine in the treatment of senescence. A protein-protein interaction(PPI) network was constructed, and key targets were screened based on degree values. Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed on the key targets to elucidate the critical pathways involved in the anti-senescence effects of matrine. Molecular docking was conducted between matrine and key targets. A senescence model was established using human umbilical vein endothelial cells(HUVECs) induced with hydrogen peroxide(H_2O_2). Following treatment with varying concentrations of matrine(0.5, 1, and 2 mmol·L~(-1)), cell viability was assessed by using the CCK-8. SA-β-galactosidase staining was employed to observe the positive rate of senescent cells. Flow cytometry was utilized to measure the apoptosis rate. Real-time quantitative PCR(RT-PCR) was utilized to measure the mRNA expression of apoptosis-related cysteine peptidase 3(CASP3), albumin(ALB), glycogen synthase kinase 3β(GSK3B), CD44 molecule(CD44), and tumor necrosis factor-α(TNF-α). Western blot was performed to detect the protein expression of tumor protein p53(p53), cyclin-dependent kinase inhibitor 1A(p21), cyclin-dependent kinase inhibitor 2A(p16), and retinoblastoma tumor suppressor protein(pRb) in the senescence signaling pathway, p38 protein kinase(p38), c-Jun N-terminal kinase(JNK), and extracellular regulated protein kinases(ERK) in the mitogen-activated protein kinase(MAPK) pathway, and phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in the PI3K/Akt signaling pathway. The experimental results revealed that matrine significantly increased the viability of HUVECs(P<0.05), decreased the positive rate of senescent cells and the apoptosis rate(P<0.05), and reduced the mRNA expression levels of CASP3, ALB, GSK3B, CD44, and TNF-α(P<0.05). It also inhibited the protein expression of p53, p21, p16 and pRb in the senescence signaling pathway(P<0.05), upregulated the protein expression of p-PI3K/PI3K and p-Akt/Akt(P<0.05), and downregulated the protein expression of p-p38/p38, p-JNK/JNK, and p-ERK/ERK(P<0.05). Collectively, these findings suggest that matrine exerts an inhibitory effect on HUVECs senescence, and its mechanism involves the modulation of the senescence signaling pathway, MAPK pathway, and PI3K/Akt signaling pathway to suppress cell apoptosis and inflammation.
Humans
;
Matrines
;
Quinolizines/chemistry*
;
Alkaloids/chemistry*
;
Human Umbilical Vein Endothelial Cells/cytology*
;
Cellular Senescence/drug effects*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Signal Transduction/drug effects*
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
10.Mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetic rats based on amino acid metabolism reprogramming pathways.
Xiang-Wei BU ; Xiao-Hui HAO ; Run-Yun ZHANG ; Mei-Zhen ZHANG ; Ze WANG ; Hao-Shuo WANG ; Jie WANG ; Qing NI ; Lan LIN
China Journal of Chinese Materia Medica 2025;50(12):3377-3388
This study aims to investigate the mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetes mellitus(T2DM) rats through the reprogramming of amino acid metabolism. A T2DM rat model was established by inducing insulin resistance through a high-fat diet combined with intraperitoneal injection of streptozotocin. The model rats were randomly divided into five groups: model group, high-, medium-, and low-dose Qingrun Decoction groups, and metformin group. A normal control group was also established. The rats in the normal and model groups received 10 mL·kg~(-1) distilled water daily by gavage. The metformin group received 150 mg·kg~(-1) metformin suspension by gavage, and the Qingrun Decoction groups received 11.2, 5.6, and 2.8 g·kg~(-1) Qingrun Decoction by gavage for 8 weeks. Blood lipid levels were measured in different groups of rats. Pathological damage in rat liver tissue was assessed by hematoxylin-eosin(HE) staining and oil red O staining. Transcriptome sequencing and untargeted metabolomics were performed on rat liver and serum samples, integrated with bioinformatics analyses. Key metabolites(branched-chain amino acids, BCAAs), amino acid transporters, amino acid metabolites, critical enzymes for amino acid metabolism, resistin, adiponectin(ADPN), and mammalian target of rapamycin(mTOR) pathway-related molecules were quantified using quantitative real-time polymerase chain reaction(qRT-PCR), Western blot, and enzyme-linked immunosorbent assay(ELISA). The results showed that compared with the normal group, the model group had significantly increased serum levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and resistin and significantly decreased ADPN levels. Hepatocytes in the model group exhibited loose arrangement, significant lipid accumulation, fatty degeneration, and pronounced inflammatory cell infiltration. In liver tissue, the mRNA transcriptional levels of solute carrier family 7 member 2(Slc7a2), solute carrier family 38 member 2(Slc38a2), solute carrier family 38 member 4(Slc38a4), and arginase(ARG) were significantly downregulated, while the mRNA transcriptional levels of solute carrier family 1 member 4(Slc1a4), solute carrier family 16 member 1(Slc16a1), and methionine adenosyltransferase(MAT) were upregulated. Furthermore, the mRNA transcription and protein expression levels of branched-chain α-keto acid dehydrogenase E1α(BCKDHA) and DEP domain-containing mTOR-interacting protein(DEPTOR) were downregulated, while mRNA transcription and protein expression levels of mTOR, as well as ribosomal protein S6 kinase 1(S6K1), were upregulated. The levels of BCAAs and S-adenosyl-L-methionine(SAM) were elevated. The serum level of 6-hydroxymelatonin was significantly reduced, while imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid levels were significantly increased. Compared with the model group, Qingrun Decoction significantly reduced blood lipid and resistin levels while increasing ADPN levels. Hepatocytes had improved morphology with reduced inflammatory cells, and fatty degeneration and lipid deposition were alleviated. Differentially expressed genes and differential metabolites were mainly enriched in amino acid metabolic pathways. The expression levels of Slc7a2, Slc38a2, Slc38a4, and ARG in the liver tissue were significantly upregulated, while Slc1a4, Slc16a1, and MAT expression levels were significantly downregulated. BCKDHA and DEPTOR expression levels were upregulated, while mTOR and S6K1 expression levels were downregulated. Additionally, the levels of BCAAs and SAM were significantly decreased. The serum level of 6-hydroxymelatonin was increased, while those of imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid were decreased. In summary, Qingrun Decoction may improve amino acid metabolism reprogramming, inhibit mTOR pathway activation, alleviate insulin resistance in the liver, and mitigate pathological damage of liver tissue in T2DM rats by downregulating hepatic BCAAs and SAM and regulating key enzymes involved in amino acid metabolism, such as BCKDHA, ARG, and MAT, as well as amino acid metabolites and transporters.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Insulin Resistance
;
Diabetes Mellitus, Type 2/genetics*
;
Male
;
Liver/drug effects*
;
Amino Acids/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Metabolic Reprogramming

Result Analysis
Print
Save
E-mail