1.Air pollution and adult hospital admissions for ischemic stroke: a time-series analysis in Inner Mongolia, China.
Sen FENG ; Chunhua LI ; Yujing JIN ; Haibo WANG ; Ruying WANG ; Zakaria Ahmed MOHAMED ; Yulong ZHANG ; Yan YAO
Environmental Health and Preventive Medicine 2025;30():29-29
BACKGROUND:
Previous studies have demonstrated that short-term exposure to ambient particulate matter elevates the risk of ischemic stroke in major urban areas of various countries. However, there is a notable gap in research focusing on remote areas inhabited by ethnic minorities and the cumulative effects of air pollutants. Our study conducted in the area aims to explore the potential association between ischemic stroke and air pollutants and contribute to improving health outcomes among the community.
METHODS:
This retrospective observational study was conducted at the Xing'an League People's Hospital in Inner Mongolia. The medical records of 4,288 patients admitted for IS between November 1, 2019, and October 31, 2020, were reviewed. Data on demographics (age and sex), air pollutants (PM10, PM2.5, NO2, NO, CO, and O3), and meteorological factors (daily average temperature, daily average wind speed, and daily average atmosphere pressure) were collected and analyzed. The statistical analysis included descriptive statistics, Poisson distribution analysis to evaluate the adverse effects of atmospheric pollutants on daily hospitalizations, and subgroup analysis to determine whether gender and age could modify the impact on hospitalizations.
RESULTS:
A substantial correlation was revealed in single-day lags model. The peak delayed effects of PM10, PM2.5, SO2, and NO2 were observed at lag8 (PM10 (OR = 1.016, 95%CI 1.002, 1.030), PM2.5 (OR = 1.027, 95%CI 1.007, 1.048), SO2 (OR = 1.153, 95%CI 1.040, 279) and NO2 (OR = 1.054, 95%CI 1.005, 1.105)) while males exhibited a consistent trend from lag0 to lag8 (PM10 (OR = 1.035, 95%CI 1.018, 1.053), PM2.5 (OR = 1.056, 95%CI 1.030, 1.082), SO2 (OR = 1.220, 95%CI 1.072, 1.389), NO2 (OR = 1.126, 95%CI 1.061, 1.120), CO (OR = 10.059, 95%CI 1.697, 59.638) and O3 (OR = 0.972, 95%CI 0.946, 0.999)). When gender and age were considered, a positive impact was also observed after three days cumulative effect in males.
CONCLUSIONS
There is a significant cumulative effect of exposure to air pollution on IS hospital admissions, especially the males and patients under the age of 65. Our results also suggested that a notable association between CO and NO2 in two-pollutant models.
Humans
;
Male
;
Female
;
Air Pollution/analysis*
;
China/epidemiology*
;
Retrospective Studies
;
Middle Aged
;
Air Pollutants/analysis*
;
Aged
;
Particulate Matter/analysis*
;
Hospitalization/statistics & numerical data*
;
Adult
;
Ischemic Stroke/chemically induced*
;
Environmental Exposure/adverse effects*
;
Aged, 80 and over
2.Histological and Physiological Studies of the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Bleomycin Induced Lung Fibrosis in Adult Albino Rats
Dina Mohamed ZAKARIA ; Noha Mahmoud ZAHRAN ; Samia Abdel Aziz ARAFA ; Radwa Ali MEHANNA ; Rehab Ahmed ABDEL-MONEIM
Tissue Engineering and Regenerative Medicine 2021;18(1):127-141
BACKGROUND:
Lung fibrosis is considered as an end stage for many lung diseases including lung inflammatory disease, autoimmune diseases and malignancy. There are limited therapeutic options with bad prognostic outcome. The aim of this study was to explore the effect of mesenchymal stem cells (MSCs) derived from bone marrow on Bleomycin (BLM) induced lung fibrosis in albino rats.
METHODS:
30 adult female albino rats were distributed randomly into 4 groups; negative control group, Bleomycin induced lung fibrosis group, lung fibrosis treated with bone marrow-MSCs (BM-MSCs) and lung fibrosis treated with cell free media. Lung fibrosis was induced with a single dose of intratracheal instillation of BLM. BM-MSCs or cell free media were injected intravenously 28 days after induction and rats were sacrificed after another 28 days for assessment. Minute respiratory volume (MRV), forced vital capacity (FVC) and forced expiratory volume 1 (FEV1) were recorded using spirometer (Power lab data acquisition system). Histological assessment was performed by light microscopic examination of H&E, and Masson’s trichrome stained sections and was further supported by morphometric studies. In addition, electron microscopic examination to assess ultra-structural changes was done. Confocal Laser microscopy and PCR were used as tools to ensure MSCs homing in the lung.
RESULTS:
Induction of lung fibrosis was confirmed by histological examination, which revealed disorganized lung architecture, thickened inter-alveolar septa due excessive collagen deposition together with inflammatory cellular infiltration. Moreover, pneumocytes depicted variable degenerative changes. Reduction in MRV, FVC and FEV1 were recorded. BM-MSCs treatment showed marked structural improvement with minimal cellular infiltration and collagen deposition and hence restored lung architecture, together with lung functions.
CONCLUSION
MSCs are promising potential therapy for lung fibrosis that could restore the normal structure and function of BLM induced lung fibrosis.
3.Histological and Physiological Studies of the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Bleomycin Induced Lung Fibrosis in Adult Albino Rats
Dina Mohamed ZAKARIA ; Noha Mahmoud ZAHRAN ; Samia Abdel Aziz ARAFA ; Radwa Ali MEHANNA ; Rehab Ahmed ABDEL-MONEIM
Tissue Engineering and Regenerative Medicine 2021;18(1):127-141
BACKGROUND:
Lung fibrosis is considered as an end stage for many lung diseases including lung inflammatory disease, autoimmune diseases and malignancy. There are limited therapeutic options with bad prognostic outcome. The aim of this study was to explore the effect of mesenchymal stem cells (MSCs) derived from bone marrow on Bleomycin (BLM) induced lung fibrosis in albino rats.
METHODS:
30 adult female albino rats were distributed randomly into 4 groups; negative control group, Bleomycin induced lung fibrosis group, lung fibrosis treated with bone marrow-MSCs (BM-MSCs) and lung fibrosis treated with cell free media. Lung fibrosis was induced with a single dose of intratracheal instillation of BLM. BM-MSCs or cell free media were injected intravenously 28 days after induction and rats were sacrificed after another 28 days for assessment. Minute respiratory volume (MRV), forced vital capacity (FVC) and forced expiratory volume 1 (FEV1) were recorded using spirometer (Power lab data acquisition system). Histological assessment was performed by light microscopic examination of H&E, and Masson’s trichrome stained sections and was further supported by morphometric studies. In addition, electron microscopic examination to assess ultra-structural changes was done. Confocal Laser microscopy and PCR were used as tools to ensure MSCs homing in the lung.
RESULTS:
Induction of lung fibrosis was confirmed by histological examination, which revealed disorganized lung architecture, thickened inter-alveolar septa due excessive collagen deposition together with inflammatory cellular infiltration. Moreover, pneumocytes depicted variable degenerative changes. Reduction in MRV, FVC and FEV1 were recorded. BM-MSCs treatment showed marked structural improvement with minimal cellular infiltration and collagen deposition and hence restored lung architecture, together with lung functions.
CONCLUSION
MSCs are promising potential therapy for lung fibrosis that could restore the normal structure and function of BLM induced lung fibrosis.
4.Obesity may be erythropoietin dose-saving in hemodialysis patients.
Ghada M EL-KANNISHY ; Abir F MEGAHED ; Mona M TAWFIK ; Ghada EL-SAID ; Rabab T ZAKARIA ; Nahed A MOHAMED ; Eman M TAHA ; Alzhraa A AMMAR ; Abeer M ABD ELTAWAB ; Nagy A SAYED-AHMED
Kidney Research and Clinical Practice 2018;37(2):148-156
BACKGROUND: In dialysis patients, the obesity-survival paradox still requires an explanation. Anemia and high doses of erythropoiesis-stimulating agents (ESAs) are associated with worse outcomes in the hemodialysis (HD) population. In the present study, we explored the relation between obesity and anemia control in a sample of maintenance HD patients in Egypt. METHODS: This multicenter observational study included 733 patients on maintenance HD from 9 hemodialysis centers in Egypt. Clinical and laboratory data as well as average doses of ESAs and parenteral iron were recorded. The erythropoietin resistance index (ERI) was calculated. RESULTS: Obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, was present in 22.6% of the studied population. The target hemoglobin level (10.0–11.5 g/dL) was achieved in 27.3% of non-obese and 25.3% of obese patients, with no significant difference. The median serum ferritin and the values of transferrin saturation index did not differ significantly between these two groups. The weekly ESA dose was significantly lower in obese than in non-obese patients (P = 0.0001). A trend toward higher ESA doses and ERI values was observed in patients with lower BMIs (P < 0.0001). Multiple linear regression revealed that the BMI and urea reduction ratio were the strongest predictors of the ERI. CONCLUSION: Our study adds more evidence to obesity-associated advantages in HD patients. BMI may determine ESA response, with better responses observed in patients with higher BMIs.
Anemia
;
Body Mass Index
;
Dialysis
;
Egypt
;
Erythropoietin*
;
Ferritins
;
Humans
;
Iron
;
Linear Models
;
Obesity*
;
Observational Study
;
Renal Dialysis*
;
Transferrin
;
Urea

Result Analysis
Print
Save
E-mail