1.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
2.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
3.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
4.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
5.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
6.Application of salivary micro-ecosystem in early prevention and control of oral and systemic diseases.
Xiangyu SUN ; Chao YUAN ; Xinzhu ZHOU ; Jing DIAO ; Shuguo ZHENG
Journal of Peking University(Health Sciences) 2025;57(5):859-863
Saliva is an important body fluid in the oral cavity containing lots of biomarkers, whose inherent micro-ecosystem holds significant value for early diagnosis and monitoring of oral diseases. Simultaneously, saliva has particular advantages, such as ease of sampling, painless and non-invasive collection, and suitability for repeated sampling, making it highly appropriate for surveillance and follow-up of diseases. In a series of studies conducted by the research group for preventive dentistry in Peking University School and Hospital of Stomatology, we compared different segments of saliva and those samples collected via different sampling methods using proteomic/peptidomic and microbiomic technologies to explore the stability of saliva samples. Besides, the significance of applying representative salivary biomarkers in early prevention and control of representative oral diseases (e.g. dental caries, periodontal diseases) and systemic conditions (e.g. type 2 diabetes mellitus, chronic kidney disease) was confirmed as well.
Humans
;
Saliva/chemistry*
;
Dental Caries/diagnosis*
;
Biomarkers/analysis*
;
Periodontal Diseases/diagnosis*
;
Mouth Diseases/diagnosis*
;
Proteomics/methods*
;
Diabetes Mellitus, Type 2/diagnosis*
;
Microbiota
;
Renal Insufficiency, Chronic/prevention & control*
7.A novel feedback loop: CELF1/circ-CELF1/BRPF3/KAT7 in cardiac fibrosis.
Yuan JIANG ; Bowen ZHANG ; Bo ZHANG ; Xinhua SONG ; Xiangyu WANG ; Wei ZENG ; Liyang ZUO ; Xinqi LIU ; Zheng DONG ; Wenzheng CHENG ; Yang QIAO ; Saidi JIN ; Dongni JI ; Xiaofei GUO ; Rong ZHANG ; Xieyang GONG ; Lihua SUN ; Lina XUAN ; Berezhnova Tatjana ALEXANDROVNA ; Xiaoxiang GUAN ; Mingyu ZHANG ; Baofeng YANG ; Chaoqian XU
Acta Pharmaceutica Sinica B 2025;15(10):5192-5211
Cardiac fibrosis is characterized by an elevated amount of extracellular matrix (ECM) within the heart. However, the persistence of cardiac fibrosis ultimately diminishes contractility and precipitates cardiac dysfunction. Circular RNAs (circRNAs) are emerging as important regulators of cardiac fibrosis. Here, we elucidate the functional role of a specific circular RNA CELF1 in cardiac fibrosis and delineate a novel feedback loop mechanism. Functionally, circ-CELF1 was involved in enhancing fibrosis-related markers' expression and promoting the proliferation of cardiac fibroblasts (CFs), thereby exacerbating cardiac fibrosis. Mechanistically, circ-CELF1 reduced the ubiquitination-degradation rate of BRPF3, leading to an elevation of BRPF3 protein levels. Additionally, BRPF3 acted as a modular scaffold for the recruitment of histone acetyltransferase KAT7 to facilitate the induction of H3K14 acetylation within the promoters of the Celf1 gene. Thus, the transcription of Celf1 was dramatically activated, thereby inhibiting the subsequent response of their downstream target gene Smad7 expression to promote cardiac fibrosis. Moreover, Celf1 further promoted Celf1 pre-mRNA transcription and back-splicing, thereby establishing a feedback loop for circ-CELF1 production. Consequently, a novel feedback loop involving CELF1/circ-CELF1/BRPF3/KAT7 was established, suggesting that circ-CELF1 may serve as a potential novel therapeutic target for cardiac fibrosis.
8.Protective mechanism of modulating cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon gene pathway in oleic acid-induced acute lung injury in mice.
Liangyu MI ; Wenyan DING ; Yingying YANG ; Qianlin WANG ; Xiangyu CHEN ; Ziqi TAN ; Xiaoyu ZHANG ; Min ZHENG ; Longxiang SU ; Yun LONG
Chinese Critical Care Medicine 2025;37(7):651-656
OBJECTIVE:
To investigate the role and mechanism of the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon gene (cGAS/STING) pathway in oleic acid-induced acute lung injury (ALI) in mice.
METHODS:
Male wild-type C57BL/6J mice were randomly divided into five groups (each n = 10): normal control group, ALI model group, and 5, 50, 500 μg/kg inhibitor pretreatment groups. The ALI model was established by tail vein injection of oleic acid (7 mL/kg), while the normal control group received no intervention. The inhibitor pretreatment groups were intraperitoneally injected with the corresponding doses of cGAS inhibitor RU.521 respectively 1 hour before modeling. At 24 hours post-modeling, blood was collected, and mice were sacrificed. Lung tissue pathological changes were observed under light microscopy after hematoxylin-eosin (HE) staining, and pathological scores were assessed. Western blotting was used to detect the protein expressions of cGAS, STING, phosphorylated TANK-binding kinase 1 (p-TBK1), phosphorylated interferon regulatory factor 3 (p-IRF3), and phosphorylated nuclear factor-κB p65 (p-NF-κB p65) in lung tissue. Immunohistochemistry was performed to observe STING and p-NF-κB positive expressions in lung tissue. Serum interferon-β (IFN-β) levels were measured by enzyme-linked immunosorbent assay (ELISA).
RESULTS:
Compared with the normal control group, the ALI model group exhibited significant focal alveolar thickening, intra-alveolar hemorrhage, pulmonary capillary congestion, and neutrophil infiltration in the pulmonary interstitium and alveoli, along with markedly increased pathological scores (10.33±0.58 vs. 1.33±0.58, P < 0.05). Protein expressions of cGAS, STING, p-TBK1, p-IRF3, and p-NF-κB p65 in lung tissue significantly increased [cGAS protein (cGAS/β-actin): 1.24±0.02 vs. 0.56±0.02, STING protein (STING/β-actin): 1.27±0.01 vs. 0.55±0.01, p-TBK1 protin (p-TBK1/β-actin): 1.34±0.03 vs. 0.22±0.01, p-IRF3 protein (p-IRF3/β-actin): 1.23±0.02 vs. 0.36±0.01, p-NF-κB p65 protein (p-NF-κB p65/β-actin): 1.30±0.02 vs. 0.53±0.02, all P < 0.05], positive expressions of STING and p-NF-κB in lung tissue were significantly elevated [STING (A value): 0.51±0.03 vs. 0.30±0.07, p-NF-κB (A value): 0.57±0.05 vs. 0.31±0.03, both P < 0.05], and serum IFN-β levels were also significantly higher (ng/L: 256.02±3.84 vs. 64.15±1.17, P < 0.05). The cGAS inhibitor pretreatment groups showed restored alveolar structural integrity, reduced inflammatory cell infiltration, and decreased hemorrhage area, along with dose-dependent lower pathological scores as well as the protein expressions of cGAS, STING, p-TBK1, p-IRF3 and p-NF-κB p65 in lung tissue, with significant differences between the 500 μg/kg inhibitor group and ALI model group [pathological score: 2.67±0.58 vs. 10.33±0.58, cGAS protein (cGAS/β-actin): 0.56±0.03 vs. 1.24±0.02, STING protein (STING/β-actin): 0.67±0.03 vs. 1.27±0.01, p-TBK1 protein (p-TBK1/β-actin): 0.28±0.01 vs. 1.34±0.03, p-IRF3 protein (p-IRF3/β-actin): 0.32±0.01 vs. 1.23±0.02, p-NF-κB p65 protein (p-NF-κB p65/β-actin): 0.63±0.01 vs. 1.30±0.02, all P < 0.05]. Compared with the ALI model group, positive expressions of STING and p-NF-κB in lung tissue were significantly reduced in the 500 μg/kg inhibitor group [STING (A value): 0.40±0.01 vs. 0.51±0.03, p-NF-κB (A value): 0.43±0.02 vs. 0.57±0.05, both P < 0.05], and serum IFN-β levels were also markedly reduced (ng/L: 150.03±6.19 vs. 256.02±3.84, P < 0.05).
CONCLUSIONS
The cGAS/STING pathway is activated in oleic acid-induced ALI, leading to exacerbated inflammatory responses and increased lung damage. RU.521 can inhibit cGAS, thereby down-regulating the expression of pathway proteins and cytokines, and providing protection to lung tissue.
Animals
;
Acute Lung Injury/chemically induced*
;
Male
;
Nucleotidyltransferases/metabolism*
;
Mice
;
Signal Transduction
;
Mice, Inbred C57BL
;
Membrane Proteins/metabolism*
;
Oleic Acid/adverse effects*
;
Transcription Factor RelA/metabolism*
;
Lung/pathology*
;
Interferon Regulatory Factor-3/metabolism*
;
Disease Models, Animal
9.Research progress on the role of glutamine metabolism-related proteins in tumor metastasis
Xuerou LIU ; Yumei YANG ; Qian ZHAO ; Xiangyu RONG ; Wei LIU ; Ruijie ZHENG ; Jinlong PANG ; Xian LI ; Shanshan LI
China Oncology 2024;34(1):97-103
Tumor metastasis is closely related to high mortality rate of cancer.It is well known that glutamine plays an important role in the malignant progression of cancer.Notably,as an important carbon and nitrogen donor,glutamine has been found to be closely related to tumor metastasis in recent years.Glutamine is not only involved in regulating the proliferation of tumor cells,but is also closely related to the migration and invasion of tumor cells.Furthermore,various enzymes along with transporters in the metabolism of glutamine are involved in the process of tumor metastasis through different signaling pathways.This review provided a summary of the role of glutamine in tumor metastasis in recent years and proposed therapeutic targets to provide new strategies for the clinical treatment of tumor metastases.
10.Analysis of the characteristics of platelet changes and influencing factors after transcatheter aortic valve implantation
Xiangyu LI ; Haibo ZHANG ; Fangyu YANG ; Shuai ZHENG ; Fei MENG ; Shengxun WANG ; Yuqing JIAO ; Yuehuan LI ; Kaisheng WU ; Jinglun SHEN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(06):832-837
Objective To analyze the characteristics of platelet changes and their influencing factors during postoperative hospitalization in patients who underwent transcatheter aortic valve implantation (TAVI). Methods The patients who underwent TAVI at Beijing Anzhen Hospital Valve Surgery Center between March 2017 and October 2021 were retrospectively selected. The patients were divided into a self-limiting group and a non-self-limiting group according to the characteristics of postoperative platelet decline. In addition, the general preoperative data, preoperative and postoperative ultrasound data, intraoperative data, and the use of anticoagulant drugs during the postoperative stay in the hospital were compared between the two groups. Results A total of 249 patients were enrolled in this study. There were 175 (70.3%) patients in the self-limiting group, including 100 males and 75 females, and there were 74 (29.7%) patients in the non-self-limiting group, including 43 males and 31 females, with no statistical difference between the two groups (P=0.863). The mean age of patients was 73.11±8.88 years in the self-limiting group and 71.54±10.39 years in the non-self-limiting group (P=0.231). The decline of platelets in the self-limiting group generally occurred on the postoperative day 2 and reached the lowest count on the postoperative day 4, and returned to the baseline level on the postoperative day 5-7, while the platelets in the non-self-limiting group changed by simple rise, fall or irregular fluctuation. Patients in the self-limiting group had severer preoperative aortic stenosis (P<0.001) and used more extracorporeal circulation assistance during surgery (P<0.001). Postoperatively, patients in the self-limiting group were more likely to have periaortic valve leakage than those in the non-self-limiting group (P=0.013). Conclusion Platelet changes in most patients after TAVI show a self-limiting decline, which may be related to the severity of patients’ preoperative aortic stenosis, intraoperative extracorporeal circulation device use, and postoperative perivalvular leakage.

Result Analysis
Print
Save
E-mail