1.Pharmacokinetic Analysis of Ziyuglycoside Ⅰ in Normal and Acute Kidney Injury Rats
Yunhui ZHANG ; Yanli LIU ; Qiongming XU ; Shuding SUN ; Hongjin ZHU ; Di ZHAO ; Suxiang FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):203-210
ObjectiveBased on ultra-high performance liquid chromatography-quadrupole-electrostatic field orbital trap-linear ion-trap mass spectrometry(UPLC-Orbitrap Fusion Lumos Tribrid-MS), the plasma concentration of ziyuglycoside Ⅰ was determined at different time points after oral administration, and its pharmacokinetic characteristics in normal rats and rats with acute kidney injury were compared. MethodsRats were randomly divided into normal group and model group, the model group received intraperitoneal cisplatin(10 mg·kg-1) to establish the acute kidney injury model, the normal group was given the same volume of saline. After successful modeling, rats in the normal and model groups were randomly divided into the normal low, medium and high dose groups(2.5, 5, 7.5 mg·kg-1) and the model low, medium and high dose groups(2.5, 5, 7.5 mg·kg-1), 6 rats in each group, and the plasma was collected at different time points after receiving the corresponding dose of ziyuglycoside Ⅰ. Then, the concentration of ziyuglycoside Ⅰ in rat plasma was determined by UPLC-Orbitrap Fusion Lumos Tribrid-MS, and the drug-time curve was poltted. The pharmacokinetic parameters were calculated by Kinetica 5.1 software, and the differences in pharmacokinetic parameters between different administration groups were compared by independent sample t-test with SPSS 22.0. ResultsThe pharmacokinetic results showed that after receiving the different doses of ziyuglycoside Ⅰ, its concentration increased first and then decreased, and all of them reached the maximum plasma concentration at about 0.5 h. The area under the curve(AUC0-t) and mean retention time(MRT0-t) of normal and model rats increased with the increased dose, and the clearance(CL) decreased with the increasing dose. Compared with the normal group, the AUC0-t was significantly increased(P<0.01), peak concentration(Cmax) and CL decreased in model rats at different doses, indicating that the physiological state of the rats could affect the absorption and elimination of ziyuglycoside Ⅰ in vivo. ConclusionThe pharmacokinetic characteristics of ziyuglycoside Ⅰ are quite different in normal rats and acute kidney injury model rats, which may be due to the change of the body environment in the pathological state, then lead to changes in absorption and metabolic processes.
2.Effects of imperatorin on malignant biological behavior of gastric cancer cells by regulating ThPOK expression
Lan CHEN ; Lingli XIA ; Ying CHEN ; Gang ZHANG ; Feng WEN
China Pharmacy 2025;36(2):191-196
OBJECTIVE To investigate the effects of imperatorin (IMP-SD) on malignant biological behavior of gastric cancer (GC) cells by regulating zinc finger and BTB domain 7B (ThPOK). METHODS Human GC cells MKN-7 were used as the research object and then divided into control group (no treatment), IMP-SD low-, medium- and high-concentration groups (40, 80 and 160 μmol/L IMP-SD), si-ThPOK and si-NC group [treated with 160 μmol/L IMP-SD and then transfected with ThPOK small interfering RNA (si-ThPOK) or its negative control (si-NC)]. After treatment, cell clone formation, migration and invasion abilities and apoptosis of MKN-7 cells were detected; the killing activity of NK cells, T cells classification, the protein expressions of ThPOK, programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were all determined. RESULTS Compared with the control group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were decreased or down-regulated significantly in IMP-SD groups, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, the ratio of CD4+ T proportion and CD8+ T proportion (CD4+ T/CD8+ T), and the protein expression of ThPOK were increased or up-regulated significantly, in a concentration-dependent manner (P<0.05). Compared with IMP-SD high-concentration group and si-NC group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were increased or up-regulated significantly in si-ThPOK group, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, CD4+ T/CD8+ T, and the protein expression of ThPOK were decreased or down-regulated significantly (P<0.05). CONCLUSIONS IMP-SD may reduce the clonal formation, migration and invasion abilities of GC cells, promote their apoptosis and inhibit their immune escape by promoting ThPOK expression.
3.Optimization of drug management model for investigator-initiated trial with benchmarking analysis
Yufei XI ; Tianxiao WANG ; Xue ZHANG ; Yingzhuo DING ; Li YAN ; Feng JIANG ; Xiangui HE ; Jiannan HUANG ; Qin LI
China Pharmacy 2025;36(3):280-284
OBJECTIVE To optimize the management model of drugs used in investigator-initiated trial (IIT). METHODS With benchmarking analysis, based on the practical work experience of a tertiary specialized hospital in the field of IIT drug management in Shanghai, a thorough review was conducted, involving relevant laws, regulations, and academic literature to establish benchmark criteria and the evaluation standards. Starting from the initiation of IIT projects, a detailed comparative analysis of key processes was carried out, such as the receipt, storage, distribution, use and recycling of drugs for trial. The deficiencies in the current management of IIT drugs were reviewed in detail and a series of optimization suggestions were put forward. RESULTS It was found that the authorized records of drug management were missing, the training before project implementation was insufficient, and the records of receipt and acceptance of IIT drugs were incomplete. In light of these existing problems, improvement measures were put forward, including strengthening the training of drug administrators and stipulating that only drug administrators with pharmacist qualifications be eligible to inspect and accept drugs, etc. The related systems were improved, and 17 key points of quality control for the management of IIT drugs were developed. CONCLUSIONS A preliminary IIT drug management system for medical institutions has been established, which helps to improve the institutional X2023076) framework of medical institutions in this field.
4.Effects of imperatorin on malignant biological behavior of gastric cancer cells by regulating ThPOK expression
Lan CHEN ; Lingli XIA ; Ying CHEN ; Gang ZHANG ; Feng WEN
China Pharmacy 2025;36(2):191-196
OBJECTIVE To investigate the effects of imperatorin (IMP-SD) on malignant biological behavior of gastric cancer (GC) cells by regulating zinc finger and BTB domain 7B (ThPOK). METHODS Human GC cells MKN-7 were used as the research object and then divided into control group (no treatment), IMP-SD low-, medium- and high-concentration groups (40, 80 and 160 μmol/L IMP-SD), si-ThPOK and si-NC group [treated with 160 μmol/L IMP-SD and then transfected with ThPOK small interfering RNA (si-ThPOK) or its negative control (si-NC)]. After treatment, cell clone formation, migration and invasion abilities and apoptosis of MKN-7 cells were detected; the killing activity of NK cells, T cells classification, the protein expressions of ThPOK, programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were all determined. RESULTS Compared with the control group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were decreased or down-regulated significantly in IMP-SD groups, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, the ratio of CD4+ T proportion and CD8+ T proportion (CD4+ T/CD8+ T), and the protein expression of ThPOK were increased or up-regulated significantly, in a concentration-dependent manner (P<0.05). Compared with IMP-SD high-concentration group and si-NC group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were increased or up-regulated significantly in si-ThPOK group, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, CD4+ T/CD8+ T, and the protein expression of ThPOK were decreased or down-regulated significantly (P<0.05). CONCLUSIONS IMP-SD may reduce the clonal formation, migration and invasion abilities of GC cells, promote their apoptosis and inhibit their immune escape by promoting ThPOK expression.
5.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α.
6.Optimization Strategy and Practice of Traditional Chinese Medicine Compound and Its Component Compatibility
Zhihao WANG ; Wenjing ZHOU ; Chenghao FEI ; Yunlu LIU ; Yijing ZHANG ; Yue ZHAO ; Lan WANG ; Liang FENG ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):299-310
Prescription optimization is a crucial aspect in the study of traditional Chinese medicine (TCM) compounds. In recent years, the introduction of mathematical methods, data mining techniques, and artificial neural networks has provided new tools for elucidating the compatibility rules of TCM compounds. The study of TCM compounds involves numerous variables, including the proportions of different herbs, the specific extraction parts of each ingredient, and the interactions among multiple components. These factors together create a complex nonlinear dose-effect relationship. In this context, it is essential to identify methods that suit the characteristics of TCM compounds and can leverage their advantages for effective application in new drug development. This paper provided a comprehensive review of the cutting-edge optimization experimental design methods applied in recent studies of TCM compound compatibilities. The key technical issues, such as the optimization of source material selection, dosage optimization of compatible herbs, and multi-objective optimization indicators, were discussed. Furthermore, the evaluation methods for component effects were summarized during the optimization process, so as to provide scientific and practical foundations for innovative research in TCM and the development of new drugs based on TCM compounds.
7.Immunity-inflammation Mechanism of Viral Pneumonia and Traditional Chinese Medicine Treatment Based on Theory of Healthy Qi and Pathogenic Qi
Zheyu LUAN ; Hanxiao WANG ; Xin PENG ; Yihao ZHANG ; Yunhui LI ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):239-247
Viral pneumonia is an infectious disease caused by virus invading the lung parenchyma and interstitial tissue and causing lung inflammation, with the incidence rising year by year. Traditional Chinese medicine (TCM) can treat viral pneumonia in a multi-component, multi-target, and holistic manner by targeting the core pathogenesis of pneumonia caused by different respiratory viruses, demonstrating minimal side effects and significant advantages. According to the theory of healthy Qi and pathogenic Qi in TCM, the struggle between healthy Qi and pathogenic Qi and the imbalance between immunity and inflammation run through the entire process of viral pneumonia, and the immunity-inflammation status at different stages of the disease reflects different relationships between healthy Qi and pathogenic Qi. Immune dysfunction leads to the deficiency of healthy Qi, causing viral infections. The struggle between healthy Qi and pathogenic Qi causes immunity-inflammation imbalance, leading to the onset of viral pneumonia. Inflammatory damage causes persistent accumulation of phlegm and stasis, leading to the progression of viral pneumonia. The cytokine storm causes immunodepletion, leading to the excess of pathogenic Qi and diminution of healthy Qi and the deterioration of viral pneumonia. After the recovery from viral pneumonia, there is a long-term imbalance between immunity and micro-inflammation, which results in healthy Qi deficiency and pathogenic Qi lingering. Healthy Qi deficiency and pathogenic Qi excess act as common core causes of pneumonia caused by different respiratory viruses. Clinical treatment should emphasize both replenishing healthy Qi and eliminating pathogenic Qi, helping to restore the balance between healthy Qi and pathogenic Qi as well as between immunity and inflammation, thus promoting the recovery of patients from viral pneumonia. According to the TCM theory of healthy Qi and pathogenic Qi, this article summarizes the immunity-inflammation mechanisms at different stages of viral pneumonia, and explores the application of the method of replenishing healthy Qi and eliminating pathogenic Qi in viral pneumonia. The aim is to probe into the scientific connotation of the TCM theory of healthy Qi and pathogenic Qi in viral pneumonia and provide ideas for the clinical application of the method of replenishing healthy Qi and eliminating pathogenic Qi to assist in the treatment of viral pneumonia.
8.Cloning and Functional Characterization of Farnesyl Diphosphate Synthase Gene in Biosynthesis of Terpenoid Components in Chinese Materia Medica
Yue ZHANG ; Feng ZHANG ; Yue ZHANG ; Chaoyue LIU ; Bolin ZHANG ; Jia LIU ; Caixia WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):175-183
ObjectiveThis study aims to enhance of the farnesyl pyrophosphate(FPP) pool in Saccharomyces cerevisiae by heterologously expressing different farnesyl diphosphate synthases(FPSs) from various plants, thereby increasing the production of terpenoid compounds by the engineered yeast. MethodsRNA from mixed samples of roots, stems, and leaves of seven plants including Arabidopsis thaliana, Rosa rugosa, Artemisia annua, Centella asiatica, Humulus lupulus, Medicago sativa, and Panax ginseng was extracted by column chromatography and reverse transcribed into the first strand of complementary DNA(cDNA), and based on the transcriptome data of the seven species of plants, sequence-specific primers were designed for CaFPS, RrFPS, MsFPS, HiFPS, PgFPS, AtFPS, and AaFPS, the full-length of the genes was cloned, and the genes were analyzed for bioinformatics in order to construct a pESC yeast shuttle vector. These seven plant-derived FPSs were further heterologously expressed in the previous constructed β-elemene-producing yeast, and the yield of β-elemene was indicated for their catalytic acivities. ResultsThe coding sequences of CaFPS, RrFPS, MsFPS, HiFPS, PgFPS, AtFPS, and AaFPS were all of 1 021 bp in length and encoding 301 amino acids, all of which were similarly related to the endogenous FPS-encoding gene(ERG20) in S. cerevisiae. After heterologous expression, RrFPS was identified as the most effective in catalyzing the synthesis of FPP from isopentenyl pyrophosphate(IPP) and dimethylallyl pyrophosphate(DMAPP). Compared to the control strains, the RrFPS overexpressed yeast strains YB-1-Rr and YB-3-Rr increased the production of β-elemene by 231.25% and 189.3%, respectively. ConclusionBy comparing the functions of FPS-encoding genes from seven different plant sources, it is determined that the protein encoded by the RrFPS from R. rugosa has the best catalytic ability, which can provide key genetic elements for the construction of engineered yeast strain constructs with high terpenoid production.
9.Analysis of Application of Animal Model of Spleen Deficiency and Dampness Syndrome Based on Data Mining
Qingqian YU ; Yifei ZHANG ; Zehan ZHANG ; Weiyue ZHANG ; Yuebo WANG ; Fengzhi WU ; Feng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):235-243
ObjectiveThe research focuses on developing modeling and evaluation methodologies for an animal model exhibiting spleen deficiency and dampness excess syndrome, with the aim of standardizing such animal models for future reference. MethodsBy conducting a literature search on animal models of spleen deficiency and dampness excess syndrome, relevant publications meeting inclusion and exclusion criteria will be identified based on publication date, data source, types of diseases involved, animal characteristics, modeling methods, modeling duration, macroscopic syndrome assessment indicators, macroscopic quantification indicators, laboratory testing parameters, intervention approaches, positive controls and application context. A database will be established to facilitate the extraction of this information for quantitative analysis, statistical evaluation, and visual representation. ResultsA total of 137 literature articles meeting the standards have been included in the research. The primary animal species used in animal models of spleen deficiency and dampness excess are SD rats. Modeling methods include single-factor, dual-factor composite, and triple-factor composite methods, with various models widely applied in validation of pharmacological effects and mechanistic explorations. Evaluation indices of animal models for spleen deficiency and dampness excess primarily consist of macroscopic syndrome evaluation indicators and macroscopic quantitative indicators. Laboratory testing indicators are mostly related to research areas such as fluid metabolism and gastrointestinal function. The most commonly studied herbal formulas currently include Shenling Baizhu San and Pingwei San, with natural recovery and the use of the western medicine metronidazole as the most frequently used positive controls. ConclusionThe application of animal models for spleen deficiency and dampness excess is gradually increasing, with various modeling methods already simulating the typical characteristics of this syndrome pattern. However, there are still many areas that are worth contemplating and improving. This study aims to provide reference and ideas for the standardization of symptom names in animal models of spleen deficiency and dampness excess, as well as for the improvement of model construction and evaluation systems.
10.Effect and mechanism of compatibility of Astragali Radix-Puerariae Lobatae Radix on ferroptosis in T2DM insulin resistance rats
Shuang WEI ; Feng HAO ; Wenchun ZHANG ; Zhangyang ZHAO ; Ji LI ; Dongwei HAN ; Huan XING
China Pharmacy 2025;36(1):57-63
OBJECTIVE To explore the effect and potential mechanism of the compatibility of Astragali Radix-Puerariae Lobatae Radix on ferroptosis of liver cells in type 2 diabetes mellitus (T2DM) insulin resistance (IR) rats. METHODS Sixty male SD rats were randomly divided into control group (12 rats) and modeling group (48 rats). The modeling group was fed with a high- fat diet for 4 consecutive weeks and then given a one-time tail vein injection of 1% streptozotocin to establish T2DM IR model. The model rats were randomly divided into model group, the compatibility of Astragali Radix-Puerariae Lobatae Radix group [QG group, 4.05 g/(kg·d), intragastric administration], ferroptosis inhibitor ferrostatin-1 group [Fer-1 group, 5 mg/kg by intraperitoneal injection, once every other day], the compatibility of Astragali Radix-Puerariae Lobatae Radix+ferroptosis inducer erastin group [QG+erastin group, 4.05 g/(kg·d) by intragastric administration+erastin 10 mg/(kg·d), intraperitoneal injection]. After 4 weeks of intervention, serum fasting blood glucose (FBG) and fasting insulin (FINS) were measured in each group of rats, and homeostasis model assessment of insulin resistance (HOMA-IR) and the natural logarithm of insulin action index(IAI) were calculated; the serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate transaminase (AST) and alanine transaminase (ALT), Fe2+ and Fe content, glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) levels, NADP+/NADPH ratio and reactive oxygen species (ROS) were determined. The pathological morphology of its liver tissue was observed; the protein expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), long-chain acyl-CoA synthetase 3 (ACSL3), ACSL4, ferritin mitochondrial (FTMT), and cystine/glutamate anti-porter (xCT) in the liver tissue of rats were detected. RESULTS Compared with control group, the liver cells in the model group of rats showed disordered arrangement, swelling, deepened nuclear staining, and more infiltration of inflammatory cells, as well as a large number of hepatocyte vacuoles and steatosis; FBG (after medication), the levels of TC, TG, LDL-C, AST, ALT, FINS, MDA and ROS, HOMA-IR, Fe2+ and Fe content, NADP+/NADPH ratio and protein expression of ACSL4 were significantly increased or up-regulated, while the levels of HDL-C, GSH and SOD, IAI, protein expressions of GPX4, FTH1, ACSL3, FTMT and xCT were significantly reduced or down-regulated (P<0.01). Compared with the model group, both QG group and Fer-1 group showed varying degrees of improvement in pathological damage of liver tissue and the levels of the above indicators, the differences in the changes of most indicators were statistically significant (P<0.01 or P<0.05). Compared with QG group, the improvement of the above indexes of QG+erastin group had been reversed significantly (P<0.01). CONCLUSIONS The compatibility decoction of Astragali Radix-Puerariae Lobatae Radix can reduce the level of FBG in T2DM IR rats, and alleviate IR degree, ion overload and pathological damage of liver tissue. The above effects are related to the inhibition of ferroptosis.

Result Analysis
Print
Save
E-mail