1.Research progress and clinical challenges in immunosuppressive regimens for xenotransplantation
Yu ZHANG ; Kun WANG ; Xuyuan ZHU ; Yuxiang CHEN ; Tao LI ; Xiaojie MA ; Hongtao JIANG
Organ Transplantation 2026;17(1):28-35
As a pivotal strategy to alleviate the shortage of organ donors, xenotransplantation has achieved remarkable advances in both pre-clinical and clinical studies in recent years, driven by continuous optimization of gene modification techniques and immunosuppressive regimens. Nevertheless, clinical translation still confronts formidable challenges, including rejection and heightened infection risks, which severely compromise long-term graft survival. Consequently, the role of immunosuppressive regimens in xenotransplantation has become increasingly prominent. This article summarizes the mechanisms underlying xenogeneic immune rejection, the latest developments in immunosuppressive regimens, cutting-edge strategies for inducing immune tolerance and the major hurdles facing clinical xenotransplantation. It delves into potential optimization strategies and directions for future clinical research, aiming to offer theoretical insights and practical guidance for the safe and effective application of clinical xenotransplantation.
2.Effect of laminin subunit α3 on epithelial-mesenchymal transition, invasion, and metastasis abilities of pancreatic cancer
Nenghong YANG ; Likun REN ; She TIAN ; Min HAN ; Zhu LI ; Yuxiang ZHAO ; Peng LIU
Journal of Clinical Hepatology 2025;41(2):322-332
ObjectiveTo investigate the effect of laminin subunit α3 (LAMA3) on the epithelial-mesenchymal transition (EMT), invasion, and metastasis abilities of pancreatic cancer (PC). MethodsA comprehensive analysis was performed for tumor- and EMT-related databases to identify the EMT genes associated with PC, especially LAMA3. The methods of qRT-PCR and Western blot were used to measure the expression level of LAMA3 in PC tissue and cell lines; immunofluorescence assay was used to determine the localization of LAMA3 in PANC-1 cells; Transwell assay was used to investigate the effect of LAMA3 on the invasion and migration abilities of PC cells. The t-test was used for comparison of continuous data between groups. ResultsThe analysis of the TCGA database identified 3 EMT-related oncogenes for PC, i.e., LAMA3, AREG, and SDC1. The LASSO-Cox regression model showed that LAMA3 had the most significant impact on the prognosis of PC (risk score=0.256 1×LAMA3+0.043 1×SDC1+0.071 4×AREG). The Cox model and nomogram showed that the high expression of LAMA3 was an independent risk factor for the poor prognosis of PC (hazard ratio=1.32, 95% confidence interval: 1.07 — 1.62, P<0.01). Experimental results showed that there was a significant increase in the expression of LAMA3 in pancreatic cancer tissue compared with the normal pancreatic tissue. Compared with the HPDE cell line, there were varying degrees of increase in the expression of LAMA3 in pancreatic cancer AsPC-1, BxPC-3, PANC-1, MIA PaCa-2, and SW1990 cell lines, with the highest expression level in PANC-1 cells. The enrichment analysis showed that LAMA3 was associated with the biological processes and signaling pathways such as EMT, collagen metabolism, extracellular matrix degradation, the TGF-β pathway, and the PI3K pathway. After the knockdown of LAMA3, there were significant reductions in the expression levels of N-Cadherin, Vimentin, and Snail, while there was a significant increase in the expression level of E-Cadherin. Transwell assay showed that there were significant reductions in the invasion and migration abilities of PANC-1 cells after the knockdown of LAMA3. ConclusionLAMA3 is highly expressed in PC and can promote the EMT, invasion, and migration of PC cells, and therefore, LAMA3 may be used as a novel diagnostic marker and a new therapeutic target for PC.
3.Advances in the diagnosis and treatment of hepatocellular carcinoma with bile duct tumor thrombus
Yuxiang GUO ; Maosen WANG ; Zhongyuan LIU ; Xudong ZHANG ; Pengfei MA ; Xiangkun WANG ; Renfeng LI
Journal of Clinical Hepatology 2025;41(2):359-364
Hepatocellular carcinoma (HCC) with biliary duct tumor thrombus (BDTT) is currently not common in clinical practice and is easily misdiagnosed, and previously, it was often considered an advanced stage of the disease with a poor prognosis, making its treatment challenging. However, in-depth studies in recent years have gradually deepened our understanding of this disease, leading to significant changes in diagnostic and treatment concepts. Currently, comprehensive treatment, mainly surgery, is used for treatment, but there is still controversy over the selection of clinical treatment strategies. This article provides a detailed discussion on surgical methods and prognosis, in order to provide a reference for clinical treatment options.
4.Salvianolate injection ameliorates cardiomyopathy by regulating autophagic flux through miR-30a/becn1 axis in zebrafish.
Jianxuan LI ; Yang ZHANG ; Zhi ZUO ; Zhenzhong ZHANG ; Ying WANG ; Shufu CHANG ; Jia HUANG ; Yuxiang DAI ; Junbo GE
Chinese Medical Journal 2025;138(20):2604-2614
BACKGROUND:
Salvianolate is a compound mainly composed of salvia magnesium acetate, which is extracted from the Chinese herb Salvia miltiorrhiza . In recent years, salvianolate injection has been widely used in the treatment of cardiovascular diseases, but the mechanism of how it can alleviate cardiotoxicity remains unclear.
METHODS:
The cardiac injury model was constructed by treatment with doxorubicin (Dox) or azithromycin (Azi) in zebrafish larvae. Heart phenotype, heart rate, and cardiomyocyte apoptosis were observed in the study. RNA-sequencing (RNA-seq) analysis was used to explore the underlying mechanism of salvianolate treatment. Moreover, cardiomyocyte autophagy was assessed by in situ imaging. In addition, the miR-30a/becn1 axis regulation by salvianolate was further investigated.
RESULTS:
Salvianolate treatment reduced the proportion of pericardial edema, recovered heart rate, and inhibited cardiomyocyte apoptosis in Dox/Azi-administered zebrafish larvae. Mechanistically, salvianolate regulated the lysosomal pathway and promoted autophagic flux in zebrafish cardiomyocytes. The expression level of becn1 was increased in Dox-induced myocardial tissue injury after salvianolate administration; overexpression of becn1 in cardiomyocytes alleviated the Dox/Azi-induced cardiac injury and promoted autophagic flux in cardiomyocytes, while becn1 knockdown blocked the effects of salvianolate. In addition, miR-30a, negatively regulated by salvianolate, partially inhibited the cardiac amelioration of salvianolate by targeting becn1 directly.
CONCLUSION
This study has proved that salvianolate reduces cardiomyopathy by regulating autophagic flux through the miR-30a/becn1 axis in zebrafish and is a potential drug for adjunctive Dox/Azi therapy.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Autophagy/drug effects*
;
Myocytes, Cardiac/metabolism*
;
Cardiomyopathies/metabolism*
;
Beclin-1/genetics*
;
Apoptosis/drug effects*
;
Plant Extracts/therapeutic use*
;
Doxorubicin
5.Macrophages in xenotransplantation
Xuyuan ZHU ; Yu ZHANG ; Yuxiang CHEN ; Tao LI ; Xiaojie MA ; Hongtao JIANG
Organ Transplantation 2025;16(4):495-501
Xenotransplantation is one of the effective ways to overcome the shortage of donor organs. However, the molecular incompatibility between xenotransplantation donors and recipients can cause rejection, which greatly limits the clinical application of xenotransplantation. In recent years, researchers have deeply explored the mechanism of xenotransplantation rejection through xenotransplantation models of pig-to-monkey and pig-to-brain death recipients, and found that the innate immune system plays an important role in rejection. Macrophages, as phagocytes in the innate immune system, not only damage xenografts through phagocytosis but also interact with other immune cells to influence the immune microenvironment of xenotransplantation. However, due to the heterogeneity of macrophages, their phenotypes and functions in xenotransplantation rejection remain unclear. Therefore, it is necessary to further explore the role of macrophages in xenotransplantation rejection. This article reviews the latest research progress of macrophages in xenotransplantation rejection, aiming to explore the mechanisms of macrophages in xenotransplantation rejection and provide references for future research.
6.The correlation between abnormal metabolic indexes and the severity of coronary artery lesions in patients with acute coronary syndrome
Yajun ZHAO ; Ming LIU ; Yuxiang DAI ; Xiaopan LI ; Xuelin CHENG ; Qizhe WANG ; Ru LIU ; Yaxin XU ; Sunfang JIANG
Chinese Journal of Clinical Medicine 2025;32(3):441-448
Objective To explore the influencing factors of coronary artery lesion severity in patients with acute coronary syndrome (ACS). Methods Clinical data of ACS patients admitted to Zhongshan Hospital, Fudan University from December 2017 to December 2019 were consecutively collected. The modified Gensini score was used to assess the severity of coronary artery lesions. Univariate and multivariate linear regression analyses were performed to identify independent factors associated with coronary artery lesion severity. Results A total of 1 689 ACS patients were included, with an average age of (64.04±11.45) years; 1 353 (80.11%) were male, and the mean modified Gensini score was (8.12±4.03). Multivariate linear regression analysis revealed that sex (β=0.97, P=0.001), age (β=0.03, P=0.021), estimated glomerular filtration rate (eGFR; β=-0.03, P<0.001), low-density lipoprotein cholesterol (LDL-C; β=0.58, P<0.001), apolipoprotein A1 (Apo A1; β=-1.28, P=0.012), lipoprotein(a) [Lp(a); β=0.001, P=0.033], and glycated hemoglobin A1C (HbA1C; β=0.45, P<0.001) were independent influencing factors of the modified Gensini score. Conclusions Metabolic indicators, including Apo A1, LDL-C, HbA1C, and Lp(a), may serve as risk factors for coronary artery lesion severity in ACS patients, with Apo A1 demonstrating the strongest impact.
7.Research progress on the role of extracellular histones in xenotransplantation
Kun WANG ; Yu ZHANG ; Yuxiang CHEN ; Xiaojie MA ; Tao LI ; Hongtao JIANG
Organ Transplantation 2025;16(6):962-969
Organ transplantation faces the challenge of a shortage of donors. Although xenotransplantation holds great potential, it is limited by rejection. Extracellular histones, as key members of damage-associated molecular patterns, have been proven in recent years to play a crucial role in transplant rejection by activating innate immunity, regulating the coagulation-inflammation network, and modulating adaptive immune responses. However, the specific functions and key mechanisms remain to be clarified. Therefore, this article reviews the structural characteristics of histones, their release pathways, the biological functions of extracellular histones, and their potential roles in xenotransplantation. It summarizes the latest research progress of extracellular histones in xenotransplantation, analyzes the shortcomings of existing research and the direction for future research, with the expectation of providing references for the application of extracellular histones in xenogeneic kidney transplantation.
8.The epigenetic landscape of rheumatoid arthritis: Pathogenesis and drug therapeutic potentials.
Chengcheng HUANG ; Yuxiang LIANG ; Yang LI ; Quan WEI ; Liang OUYANG ; Jifa ZHANG
Acta Pharmaceutica Sinica B 2025;15(11):5601-5631
Rheumatoid arthritis (RA) represents a persistent autoimmune condition distinguished by a multifaceted etiology that encompasses both genetic and environmental factors. Recent progress in understanding the mechanisms behind RA pathogenesis has delved into the critical role of epigenetic regulatory processes, including DNA methylation, histone modifications, and the regulation by microRNAs (miRNAs). These findings provide new insights into the intricate nature of RA and pave the way for innovative therapeutic strategies. This review consolidates the latest developments in the epigenetic regulation of RA, concentrating on how these mechanisms affect the dysregulated signaling pathways associated with the disease. We analyze the roles of specific proteins that function as 'writers', 'erasers', and 'readers' in epigenetic modifications, highlighting their potential as targets for therapeutic intervention. Additionally, in view of the significance of miRNAs in the pathogenesis of RA, we deliberate on their involvement in disease progression and explore miRNA-based treatment strategies. By integrating these diverse epigenetic dimensions, this review offers a comprehensive epigenetic perspective on RA pathogenesis and identifies promising avenues for future research and therapeutic interventions.
9.iTRAQ-based proteomics reveals the mechanism of action of Yinlai decoction in treating pneumonia in mice consuming a high-calorie diet
Qianqian Li ; Tiegang Liu ; Chen Bai ; Xueyan Ma ; Hui Liu ; Zi ; an Zheng ; Yuxiang Wan ; He Yu ; Yuling Ma ; Xiaohong Gu
Journal of Traditional Chinese Medical Sciences 2024;11(1):21-32
Objective:
To uncover the underlying mechanisms of action of the Yinlai decoction on high-calorie diet-induced pneumonia through proteomics analysis.
Methods:
Based on the Gene Expression Omnibus (GEO) database, lung tissue samples from normal and high-fat diet (HFD) fed mice in the GSE16377 dataset were selected as test cohorts to identify differentially expressed genes and conduct bioinformatics analyses. In the animal experiments, mice were randomly divided into the control (N), high-calorie diet pneumonia (M), and Yinlai decoction treatment (Y) groups. Mice in the M group received high-calorie feed and a 0.5 mg/mL lipopolysaccharide solution spray for 30 min for 3 d. The mice in the Y group were intragastrically administered 2 mL/10 g Yinlai decoction twice daily for 3 d. Pathological evaluation of the lung tissue was performed. Differentially expressed proteins (DEPs) in the lung tissue were identified using quantitative proteomics and bioinformatics analyses. The drug-target relationships between Yinlai decoction and core DEPs in the lung tissue were verified using AutoDock Vina and Molecular Graphics Laboratory (MGL) Tools. DEPs were verified by western blot.
Results:
GEO data mining showed that an HFD altered oxidative phosphorylation in mouse lung tissue. The Yinlai decoction alleviated pathological damage to lung tissue and pneumonia in mice that were fed a high-calorie diet. A total of 47 DEPs were identified between the Y and M groups. Enrichment analysis revealed their association with energy metabolism pathways such as the tricarboxylic acid cycle (TCA) and oxidative phosphorylation. The protein-protein interaction network revealed that Atp5a1, Pdha1, and Sdha were the target proteins mediating the therapeutic effects of Yinlai decoction. Molecular docking results suggested that the mechanism of the therapeutic effect of Yinlai decoction involves the binding of brassinolide, praeruptorin B, chrysoeriol, and other components in Yinlai decoction to Atp5a1.
Conclusion
The Yinlai decoction alleviated lung tissue damage and pneumonia in mice that were fed a high-calorie diet by regulating the TCA and oxidative phosphorylation. Our study highlights the importance of a healthy diet for patients with pneumonia and provides a scientific basis for the prevention and treatment of pneumonia through dietary adjustments.
10.The Miao medicine Sidaxue alleviates rheumatoid arthritis in rats possibly by downregulating matrix metalloproteinases
Yunfei LI ; Jingyi YANG ; Ying ZHANG ; Caixia ZHANG ; Yuxiang WEI ; Yiying WANG ; Ning WU ; Jianfei SUN ; Zunqiu WU
Journal of Southern Medical University 2024;44(4):739-747
Objective To explore the inhibitory effect of Sidaxue, a traditional Miao herbal medicine formula, on articular bone and cartilage destruction and synovial neovascularization in rats with collagen-induced arthritis (CIA). Methods In a SD rat model of CIA, we tested the effects of daily gavage of Sidaxue at low, moderate and high doses (10, 20, and 40 g/kg, respectively) for 21 days, with Tripterygium glycosides (GTW) as the positive control, on swelling in the hind limb plantar regions by arthritis index scoring. Pathologies in joint synovial membrane of the rats were observed with HE staining, and serum TNF-α and IL-1β levels were detected with ELISA. The expressions of NF-κB p65, matrix metalloproteinase 1 (MMP1), MMP2 and MMP9 at the mRNA and protein levels in the synovial tissues were detected using real-time PCR and Western blotting. Network pharmacology analysis was conducted to identify the important target proteins in the pathways correlated with the therapeutic effects of topical Sidaxue treatment for RA, and the core target proteins were screened by topological analysis. Results Treatment with GTW and Sidaxue at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, improved cartilage and bone damage and reduced neovascularization in CIA rats (P<0.05), and the effects of Sidaxue showed a dose dependence. Both GTW and Sidaxue treatments significantly lowered TNF-α, IL-1β, NF-κB p65, MMP1, MMP2, and MMP9 mRNA and protein expressions in the synovial tissues of CIA rats (P<0.05). Network pharmacological analysis identified MMPs as the core proteins associated with topical Sidaxue treatment of RA. Conclusion Sidaxue alleviates articular bone and cartilage damages and reduces synovial neovascularization in CIA rats possibly by downregulating MMPs via the TNF-α/IL-1β/NF-κB-MMP1, 2, 9 signaling pathway, and MMPs probably plays a key role in mediating the effect of Sidaxue though the therapeutic pathways other than oral administration.


Result Analysis
Print
Save
E-mail