1.Research progress of artificial intelligence in the diagnosis and treatment of polypoidal choroidal vasculopathy
Yuting YANG ; Xingming LIAO ; Hongjie MA
International Eye Science 2025;25(3):416-421
Polypoidal choroidal vasculopathy(PCV)is one of the important subtypes of neovascular age-related macular degeneration(nARMD), which causes severe vision loss. It is necessary to distinguish PCV from other nARMD subtypes to guide the clinical treatment plans and predict disease outcomes. In recent years, artificial intelligence(AI)has been widely used in the diagnosis and research of ophthalmic diseases. By utilizing machine learning or deep learning combined with examination images in disease classification, lesion segmentation, and quantitative assessment, etc. This article reviews the recent applications of AI in the differential diagnosis of PCV through various examination images, the segmentation and quantification of biomarkers, as well as the prediction of genotype, response to anti-vascular endothelial growth factor(VEGF)therapy, and the short-term risk of vitreous hemorrhage. It summarizes the difficulties and challenges in clinical practice of AI and looks forward to the advantages and development trends of AI in PCV applications in the future. The article aims to provide more information for further research and application, thereby improving the diagnostic rate of PCV, optimizing treatment plans, and improving patients' visual prognosis.
2.Research progress of artificial intelligence in the diagnosis and treatment of polypoidal choroidal vasculopathy
Yuting YANG ; Xingming LIAO ; Hongjie MA
International Eye Science 2025;25(3):416-421
Polypoidal choroidal vasculopathy(PCV)is one of the important subtypes of neovascular age-related macular degeneration(nARMD), which causes severe vision loss. It is necessary to distinguish PCV from other nARMD subtypes to guide the clinical treatment plans and predict disease outcomes. In recent years, artificial intelligence(AI)has been widely used in the diagnosis and research of ophthalmic diseases. By utilizing machine learning or deep learning combined with examination images in disease classification, lesion segmentation, and quantitative assessment, etc. This article reviews the recent applications of AI in the differential diagnosis of PCV through various examination images, the segmentation and quantification of biomarkers, as well as the prediction of genotype, response to anti-vascular endothelial growth factor(VEGF)therapy, and the short-term risk of vitreous hemorrhage. It summarizes the difficulties and challenges in clinical practice of AI and looks forward to the advantages and development trends of AI in PCV applications in the future. The article aims to provide more information for further research and application, thereby improving the diagnostic rate of PCV, optimizing treatment plans, and improving patients' visual prognosis.
3.Analysis of unhealthy listening habits and related factors on hearing impairment among primary and middle school students in Jilin Province
YANG Shuo, LIU Bing, ZHANG Yuting, WU Xiaogang, MEI Songli
Chinese Journal of School Health 2025;46(2):215-218
Objective:
To understand the unhealthy listening habits and related factors hearing on impairment among primary and middle school students in Jilin Province, so as to provide a scientific basis for the prevention of hearing impairment in children and adolescents.
Methods:
From September to November 2021, a stratified cluster random sampling method was employed to select 12 847 primary and middle school students in nine cities of Jilin Province who use headphones for more than 0.5 hours daily for a questionnaire survey. Data on unhealthy listening habits, lifestyle habits and hearing impairment were collected. The data were analyzed using the χ 2 test and Logistic regression.
Results:
Totally 1 702 students(13.25%) experienced hearing impairment within the last month. There were statistical differences between the sexes with the average daily headphone use, the times of using headphones ≥1 h every day for one week use in all environment or noisy environment ( χ 2=47.86, 57.60, 66.31, P <0.01). Logistic regression analysis results showed that factors related to the occurrence of hearing impairment among primary and secondary school students included:average daily headphone use of 1-2 h and more than 2 h ( OR=1.74, 95%CI =1.60-1.90; OR=1.73, 95%CI =1.59-1.90), times of using headphones ≥1 h every day for one week were 1-2 times and >2 times ( OR=1.71, 95%CI =1.59- 1.84 ; OR=1.83, 95%CI =1.71-1.97), the times of using headphones≥1 h every day for one week being 1-2 times and >2 times in noisy environment per week ( OR=1.48, 95%CI =1.40-1.56; OR=1.72, 95%CI =1.61-1.86), economic underdevelopment ( OR=1.85, 95%CI =1.76-1.96), boarding (OR=1.78, 95%CI =1.69-1.89), single parent family ( OR=1.72, 95%CI =1.60- 1.87 ), daily activity duration less than 1 h ( OR=1.71, 95%CI =1.63-1.81), sedentary behavior duration more than 6 h per day ( OR=1.88, 95%CI =1.79-1.98) ( P <0.05).
Conclusions
The behavior of ear protection among primary and middle school students in Jilin Province needs to be enhanced, focusing on students in economically underdeveloped areas, boarding schools and single parent families. It is necessary to guide primary and middle school students to improve their bad ear habits, increase outdoor activities and reduce the time of sitting.
4.Mechanism of action of Homebox A6 in regulating the proliferation, invasion, metastasis, and apoptosis of HepG2 hepatoma cells
Yuting LIU ; Jingyin MAI ; Tianlu HOU ; Yang CHENG
Journal of Clinical Hepatology 2025;41(4):690-697
ObjectiveTo investigate the effect of Homebox A6 (HOXA6) on the proliferation, invasion, metastasis, and apoptosis of HepG2 hepatoma cells and its association with the PI3K/AKT signaling pathway. MethodsHepG2 hepatoma cells were cultured, and HOXA6 overexpression plasmid and siRNA were constructed and transfected into cells. The cells were randomly divided into empty plasmid group, HOXA 6 overexpression group, siRNA negative control group, and siRNA HOXA6 interference group. CCK8 assay was used to measure cell proliferation, Transwell assay was used to observe cell invasion, and wound healing assay was used to observe cell migration (related proteins TIMP3, MMP9, and MMP3). Flow cytometry was used to measure cell apoptosis (related proteins BAX and BCL2), the BCA method was used to measure protein concentration, and Western Blot was used to measure the expression of related proteins. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the SNK-q test was used for further comparison between two groups. ResultsCompared with the empty plasmid group, HOXA6 overexpression significantly promoted the proliferation, invasion, and migration of HepG2 hepatoma cells (all P<0.001), and there was a significant reduction in the protein expression of TIMP3 (P<0.001), while there were significant increases in the expression levels of MMP9 and MMP3 (both P<0.001). Compared with the siRNA negative control group, HOXA6 interference significantly inhibited the proliferation, invasion, and migration of HepG2 hepatoma cells (all P<0.001), and there was a significant increase in the protein expression of TIMP3 (P<0.001), while there were significant reductions in the expression levels of MMP9 and MMP3 (both P<0.001). Flow cytometry showed that compared with the empty plasmid group, HOXA6 overexpression inhibited the apoptosis of HepG2 hepatoma cells (P<0.001), with a significant reduction in the expression of the apoptosis-related protein BAX and a significant increase in the expression of BCL2 (both P<0.001). Compared with siRNA negative control group, HOXA6 interference promoted the apoptosis of HepG2 hepatoma cells (P<0.001), with a significant increase in the expression of BAX and a significant reduction in the expression of BCL2 (both P<0.001). Compared with the empty plasmid group, the HOXA6 overexpression group had significantly higher ratios of p-AKT/AKT and p-PI3K/PI3K (both P<0.001), and compared with the siRNA negative control group, the siRNA HOXA6 interference group had significantly lower ratios of p-AKT/AKT and p-PI3K/PI3K (both P<0.001). ConclusionHOXA6 can promote the proliferation, invasion, and metastasis of HepG2 hepatoma cells and inhibit their apoptosis by activating the PI3K/AKT signaling pathway through phosphorylation.
5.Shaoyaotang Containing Serum Mediates Fas/FasL Pathway to Inhibit Lipopolysaccharide Induced Inflammation and Apoptosis of Caco-2 Cells
Yuting YANG ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Nianjia XIE ; Bo ZOU ; Daguang CHEN ; Erle LIU ; Yi LU ; Zhaowen LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):62-69
ObjectiveTo investigate the effects of different concentrations of Shaoyaotang-containing serum on lipopolysaccharide (LPS)-induced inflammation of human colorectal adenocarcinoma (Caco-2) cells by inhibiting apoptosis via activating the tumor necrosis factor (TNF) receptor superfamily member 6 (Fas)/Fas ligand (FasL) pathway. MethodsCaco-2 cells were allocated into blank, model (LPS, 10 mg·L-1), Shaoyaotang-containing serum (5%, 10%, 15%, 20%), and Fas inhibitor (KR-33493, 20 mmol·L-1) groups. Except the blank group, the other groups were stimulated with 10 mg·L-1 LPS for 24 h for the modeling of inflammation. After successful modeling, the blank, Fas inhibitor, and model groups were treated with blank serum, and the Shaoyaotang-containing serum groups were treated with the serum samples at corresponding concentrations for 24 h. The Fas inhibitor group was subjected to KR-33493 pretreatment for 1 h. Cell proliferation and viability were examined by the cell-counting kit-8 (CCK-8) method. The levels of interleukin (IL)-6, IL-1β, and TNF-α were measured by enzyme-linked immunosorbent assay. Apoptosis was detected by flow cytometry. The protein and mRNA levels of Fas, FasL, cysteinyl aspartate-specific proteinase (Caspase)-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsCompared with the blank group, the model group presented a decrease in cell survival rate (P<0.01). Compared with that in the model group, the cell survival rate showed no significant change in the 5% Shaoyaotang-containing serum group but increased in the 10%, 15%, and 20% Shaoyaotang-containing serum groups (P<0.01). Since there was no statistical difference between the 5% Shaoyaotang-containing serum group and the model group, 10%, 15%, and 20% Shaoyaotang-containing sera were selected for the follow-up study. Compared with the blank group, the model group showed risen levels of IL-6, IL-1β, and TNF-α (P<0.01), an increased apoptosis rate (P<0.01), up-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.01), and down-regulated protein and mRNA levels of Bcl-2 (P<0.01). Compared with the model group, the Fas inhibitor group and the 10%, 15%, and 20% Shaoyaotang-containing serum groups showed declined levels of IL-6, IL-1β, and TNF-α (P<0.01), decreased apoptosis rates (P<0.01), down-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and up-regulated protein and mRNA levels of Bcl-2 (P<0.05, P<0.01). In addition, the 15% and 20% Shaoyaotang-containing serum groups had lower levels of IL-6, IL-1β, and TNF-α (P<0.05, P<0.01), lower apoptosis rates (P<0.05, P<0.01), lower protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and higher protein and mRNA levels of Bcl-2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can reduce the content of inflammatory factors in Caco-2 cells, down-regulate the protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax, and up-regulate the protein and mRNA levels of Bcl-2 under the intervention of LPS by regulating the Fas/FasL pathway and inhibiting the apoptosis of intestinal epithelial cells in ulcerative colitis.
6.Shaoyaotang Alleviates Damage of Tight Junction Proteins in Caco-2 Cell Model of Inflammation by Regulating RhoA/ROCK Pathway
Nianjia XIE ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Yuting YANG ; Bo ZOU ; Da ZHAO ; Yi LU ; Mingsheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):70-77
ObjectiveTo investigate the protective effect and mechanism of Shaoyaotang (SYD) on the lipopolysaccharide (LPS)-induced damage of tight junction proteins in the human colorectal adenocarcinoma (Caco-2) cell model of inflammation via the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway. MethodsCaco-2 cells were grouped as follows: Blank, model (LPS, 10 mg·L-1), SYD-containing serum (10%, 15%, and 20%), and inhibitor (Fasudil, 25 μmol·L-1). After 24 hours of intervention, the cell viability in each group was examined by the cell-counting kit 8 (CCK-8) method. Enzyme-linked immunosorbent assay was employed to determine the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of RhoA, ROCK2, claudin-5, and zonula occludens-1 (ZO-1) in cells of each group. ResultsCompared with the blank group, the model group showcased a marked reduction in the cell viability (P<0.01), elevations in the levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), declines in both mRNA and protein levels of ZO-1 and claudin-5 (P<0.01), and rises in mRNA and protein levels of RhoA and ROCK2 (P<0.01). Compared with the model group, the Shaoyaotang-containing serum (10%, 15%, and 20%) groups had enhanced cell viability (P<0.01), lowered levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), up-regulated mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and down-regulated mRNA and protein levels of RhoA and ROCK2 (P<0.01). Moreover, the inhibitor group and the 15% and 20% Shaoyaotang-containing serum groups had lower levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), higher mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and lower mRNA and protein levels of RhoA and ROCK2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can lower the levels of LPS-induced increases in levels of inflammatory cytokines and endothelin to ameliorate the damage of tight junction proteins of the Caco-2 cell model of inflammation by regulating the expression of proteins in the RhoA/ROCK pathway.
7.Shaoyaotang Containing Serum Mediates Fas/FasL Pathway to Inhibit Lipopolysaccharide Induced Inflammation and Apoptosis of Caco-2 Cells
Yuting YANG ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Nianjia XIE ; Bo ZOU ; Daguang CHEN ; Erle LIU ; Yi LU ; Zhaowen LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):62-69
ObjectiveTo investigate the effects of different concentrations of Shaoyaotang-containing serum on lipopolysaccharide (LPS)-induced inflammation of human colorectal adenocarcinoma (Caco-2) cells by inhibiting apoptosis via activating the tumor necrosis factor (TNF) receptor superfamily member 6 (Fas)/Fas ligand (FasL) pathway. MethodsCaco-2 cells were allocated into blank, model (LPS, 10 mg·L-1), Shaoyaotang-containing serum (5%, 10%, 15%, 20%), and Fas inhibitor (KR-33493, 20 mmol·L-1) groups. Except the blank group, the other groups were stimulated with 10 mg·L-1 LPS for 24 h for the modeling of inflammation. After successful modeling, the blank, Fas inhibitor, and model groups were treated with blank serum, and the Shaoyaotang-containing serum groups were treated with the serum samples at corresponding concentrations for 24 h. The Fas inhibitor group was subjected to KR-33493 pretreatment for 1 h. Cell proliferation and viability were examined by the cell-counting kit-8 (CCK-8) method. The levels of interleukin (IL)-6, IL-1β, and TNF-α were measured by enzyme-linked immunosorbent assay. Apoptosis was detected by flow cytometry. The protein and mRNA levels of Fas, FasL, cysteinyl aspartate-specific proteinase (Caspase)-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsCompared with the blank group, the model group presented a decrease in cell survival rate (P<0.01). Compared with that in the model group, the cell survival rate showed no significant change in the 5% Shaoyaotang-containing serum group but increased in the 10%, 15%, and 20% Shaoyaotang-containing serum groups (P<0.01). Since there was no statistical difference between the 5% Shaoyaotang-containing serum group and the model group, 10%, 15%, and 20% Shaoyaotang-containing sera were selected for the follow-up study. Compared with the blank group, the model group showed risen levels of IL-6, IL-1β, and TNF-α (P<0.01), an increased apoptosis rate (P<0.01), up-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.01), and down-regulated protein and mRNA levels of Bcl-2 (P<0.01). Compared with the model group, the Fas inhibitor group and the 10%, 15%, and 20% Shaoyaotang-containing serum groups showed declined levels of IL-6, IL-1β, and TNF-α (P<0.01), decreased apoptosis rates (P<0.01), down-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and up-regulated protein and mRNA levels of Bcl-2 (P<0.05, P<0.01). In addition, the 15% and 20% Shaoyaotang-containing serum groups had lower levels of IL-6, IL-1β, and TNF-α (P<0.05, P<0.01), lower apoptosis rates (P<0.05, P<0.01), lower protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and higher protein and mRNA levels of Bcl-2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can reduce the content of inflammatory factors in Caco-2 cells, down-regulate the protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax, and up-regulate the protein and mRNA levels of Bcl-2 under the intervention of LPS by regulating the Fas/FasL pathway and inhibiting the apoptosis of intestinal epithelial cells in ulcerative colitis.
8.Shaoyaotang Alleviates Damage of Tight Junction Proteins in Caco-2 Cell Model of Inflammation by Regulating RhoA/ROCK Pathway
Nianjia XIE ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Yuting YANG ; Bo ZOU ; Da ZHAO ; Yi LU ; Mingsheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):70-77
ObjectiveTo investigate the protective effect and mechanism of Shaoyaotang (SYD) on the lipopolysaccharide (LPS)-induced damage of tight junction proteins in the human colorectal adenocarcinoma (Caco-2) cell model of inflammation via the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway. MethodsCaco-2 cells were grouped as follows: Blank, model (LPS, 10 mg·L-1), SYD-containing serum (10%, 15%, and 20%), and inhibitor (Fasudil, 25 μmol·L-1). After 24 hours of intervention, the cell viability in each group was examined by the cell-counting kit 8 (CCK-8) method. Enzyme-linked immunosorbent assay was employed to determine the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of RhoA, ROCK2, claudin-5, and zonula occludens-1 (ZO-1) in cells of each group. ResultsCompared with the blank group, the model group showcased a marked reduction in the cell viability (P<0.01), elevations in the levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), declines in both mRNA and protein levels of ZO-1 and claudin-5 (P<0.01), and rises in mRNA and protein levels of RhoA and ROCK2 (P<0.01). Compared with the model group, the Shaoyaotang-containing serum (10%, 15%, and 20%) groups had enhanced cell viability (P<0.01), lowered levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), up-regulated mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and down-regulated mRNA and protein levels of RhoA and ROCK2 (P<0.01). Moreover, the inhibitor group and the 15% and 20% Shaoyaotang-containing serum groups had lower levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), higher mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and lower mRNA and protein levels of RhoA and ROCK2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can lower the levels of LPS-induced increases in levels of inflammatory cytokines and endothelin to ameliorate the damage of tight junction proteins of the Caco-2 cell model of inflammation by regulating the expression of proteins in the RhoA/ROCK pathway.
9.Quality Evaluation of Black Panacis Quinquefolii Radix Based on Neuroprotective Spectrum-effect Relationship
Yuting YANG ; Shuyun LIANG ; Shanshan LI ; Yulong YANG ; Ziqi YANG ; Guangzhi CAI ; Liru ZHAO ; Jiyu GONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):149-156
ObjectiveTo clarify the neuroprotective effect of black Panacis Quinquefolii Radix(PQR) and explore its active ingredients, with the aim of establishing an activity-oriented quality evaluation method. MethodsTransgenic Tg(HuC∶EGFP) zebrafish was used to establish a neuronal injury model by aluminum chloride immersion. Different doses(10, 20 mg·L-1) of PQR and black PQR ethanol extracts were administered. The neuroprotective effects of PQR and black PQR were compared by analyzing the fluorescent area and intensity of zebrafish neurons. Based on ultra-performance liquid chromatography(UPLC), a fingerprint profile of black PQR was established, followed by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Differential components were screened using the criteria of variable importance in the projection(VIP) value>1 and P<0.05. The neuroprotective activity of 14 batches of black PQR was assessed, and Spearman correlation analysis was used to identify saponins related to neuroprotective activity, which were then validated. Based on the above results, active marker components were determined, and an UPLC method was established for their quantitation with clear content limits. ResultsPharmacological efficacy results showed that both PQR and black PQR at different doses could significantly improved neuronal damage in zebrafish. At a dose of 20 mg·L-1, black PQR demonstrated superior efficacy(P<0.05). The fingerprint similarities of 14 batches of black PQR were>0.94, with 26 common peaks identified. Through comparison with the reference standards, 8 components were confirmed, including peak 1(ginsenoside Rg1), peak 2(ginsenoside Re), peak 5(ginsenoside Rb1), peak 9(ginsenoside Rd), peak 16[ginsenoside 20(S)-Rg3], peak 17[ginsenoside 20(R)-Rg3], peak 18(ginsenoside Rk1), and peak 19(ginsenoside Rg5). The results of PCA and OPLS-DA indicated that there were differences in saponins among black PQR samples from different origins, and 12 differential components were screened. All 14 batches of black PQR exhibited good protective effects on zebrafish neurons, with Shaanxi-produced black PQR showing superior protective effects compared to the other three production regions. Spearman correlation analysis revealed that a total of 11 components, including ginsenosides 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5, showed a significant positive correlation with the neuroprotective effect in zebrafish(P<0.05). The activity validation results indicated that ginsenosides 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5 were the primary components responsible for the neuroprotective effects of black PQR. Quantitative analysis showed that the content of ginsenoside 20(S)-Rg3 in 14 batches of black PQR ranged from 0.17% to 0.52%, and the repair rate of neuronal damage ranged from 42.77% to 97.83%. ConclusionBased on the fingerprint and neuronal protective activity, the spectrum-effect related quality control model of black PQR was established, with ginsenoside 20(S)-Rg3 as the quality control index, and the neuronal damage repair rate≥60% as the evaluation standard, the minimum limit of ginsenoside 20(S)-Rg3 in black PQR should be≥0.20%.
10.A novel dual-targeting strategy of nanobody-driven protein corona modulation for glioma therapy.
Yupei ZHANG ; Shugang QIN ; Tingting SONG ; Zhiying HUANG ; Zekai LV ; Yang ZHAO ; Xiangyu JIAO ; Min SUN ; Yinghan ZHANG ; Guang XIE ; Yuting CHEN ; Xuli RUAN ; Ruyue LIU ; Haixing SHI ; Chunli YANG ; Siyu ZHAO ; Zhongshan HE ; Hai HUANG ; Xiangrong SONG
Acta Pharmaceutica Sinica B 2025;15(9):4917-4931
Glioma represents the most prevalent malignant tumor of the central nervous system, with chemotherapy serving as an essential adjunctive treatment. However, most chemotherapeutic agents exhibit limited ability to penetrate the blood-brain barrier (BBB). This study introduced a novel dual-targeting strategy for glioma therapy by modulating the formation of nanobody-driven protein coronas to enhance the brain and tumor-targeting efficiency of hydrophobic cisplatin prodrug-loaded lipid nanoparticles (C8Pt-Ls). Specifically, nanobodies (Nbs) with fibrinogen-binding capabilities were conjugated to the surface of C8Pt-Ls, resulting in the generation of Nb-C8Pt-Ls. Within the bloodstream, Nb-C8Pt-Ls could bound more fibrinogen, forming the protein corona that specifically interacted with LRP-1, a receptor highly expressed on the BBB. This interaction enabled a "Hitchhiking Effect" mechanism, facilitating efficient trans-BBB transport and promoting effective brain targeting. Additionally, the protein corona interacted with LRP-1, which is also overexpressed in glioma cells, achieving precise tumor targeting. Computational simulations and SPR detection clarified the molecular interaction mechanism of the Nb-fibrinogen-(LRP-1) complex, confirming its binding specificity and stability. Our results demonstrated that this strategy significantly enhanced C8Pt accumulation in brain tissues and tumors, induced apoptosis in glioma cells, and improved therapeutic efficacy. This study provides a novel framework for glioma therapy and underscores the potential of protein corona modulation-based dual-targeting strategies in advancing treatments for brain tumors.


Result Analysis
Print
Save
E-mail