1.The application of monopolar electric scissors in Da Vinci robot-assisted distal pancreatectomy
Tianyang CAI ; Hongqin MA ; Li LIU ; Yusheng DU ; Ji WANG ; Wenxing ZHAO
Chinese Journal of Hepatobiliary Surgery 2024;30(5):335-340
Objective:To compare the efficacy of monopolar electric scissors and harmonic scalpel in Da Vinci robot-assisted distal pancreatectomy.Methods:A total of 31 patients undergoing Da Vinci robot-assisted distal pancreatectomy at the Affiliated Hospital of Xuzhou Medical University from July 2020 to December 2023 were included. There were 9 males and 22 females, aged (54.4±15.7) years. Thirty-one patients who underwent Da Vinci robot-assisted distal pancreatectomy by monopolar electric scissors were included in the monopolar electric scissors group ( n=12), with a multi-joint flexible rotating mechanical arm to complete the dissection and separation and the other were inducled in harmonic scalpel group ( n=19). Operation time, intraoperative blood loss, spleen preservation, postoperative exhaust time, postoperative hospital stay, postoperative complications and total hospitalization cost were compared between the two groups. Results:Postoperative pathology confirmed that among the 31 patients, there were 6 cases (19.4%) serous cystadenomas, 5 cases (16.1%) mucinous cystadenomas, 3 cases (9.7%) pancreatic neuroendocrine tumors, 6 cases (19.4%) solid pseudopapilloma, 5 cases (16.1%) pancreatic cysts, and 3 (9.7%) benign cystic lesions, 3 cases (9.7%) were not easily classified. All the operations were successfully completed without conversion to laparotomy or death. There were no significant differences in operation time, intraoperative blood loss, splenic preservation rate, postoperative hospital stay and total hospitalization cost between the two groups (all P>0.05). The exhaust time in the monopolar electric scissors group was (2.8±0.7) d, which was shorter than that in the harmonic scalpel group (3.6±0.7) d, and the difference was statistically significant ( t=-2.88, P=0.007). There was no postoperative bleeding in both groups. In the monopolar electric scissors group, there were 4 cases of postoperative complications, all of which were pancreatic fistula, including 2 cases of biochemical leakage and 2 cases of B-grade pancreatic fistula. In the harmonic scalpel group, 8 cases had postoperative complications, 7 cases of pancreatic fistula, including 3 cases of biochemical leakage, 4 cases of B-grade pancreatic fistula, and 3 cases of abdominal infection, which were cured after treatment. There was no significant difference in the incidence of postoperative complications between the two groups ( P=0.717). Conclusion:The application of monopolar electric scissors in Da Vinci robot-assisted distal pancreatectomy could be safe and feasible in experienced hands, which could also utilize the advantages of robot system.
2.4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis.
Yifang HE ; Qianzhao JI ; Zeming WU ; Yusheng CAI ; Jian YIN ; Yiyuan ZHANG ; Sheng ZHANG ; Xiaoqian LIU ; Weiqi ZHANG ; Guang-Hui LIU ; Si WANG ; Moshi SONG ; Jing QU
Protein & Cell 2023;14(3):202-216
Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.
Mesenchymal Stem Cells/physiology*
;
Cellular Senescence
;
Homeostasis
;
Cell Cycle Proteins/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Mitochondria/metabolism*
;
Electron Transport Complex III/metabolism*
;
Humans
;
Cells, Cultured
3.Single-cell profiling reveals a potent role of quercetin in promoting hair regeneration.
Qian ZHAO ; Yandong ZHENG ; Dongxin ZHAO ; Liyun ZHAO ; Lingling GENG ; Shuai MA ; Yusheng CAI ; Chengyu LIU ; Yupeng YAN ; Juan Carlos Izpisua BELMONTE ; Si WANG ; Weiqi ZHANG ; Guang-Hui LIU ; Jing QU
Protein & Cell 2023;14(6):398-415
Hair loss affects millions of people at some time in their life, and safe and efficient treatments for hair loss are a significant unmet medical need. We report that topical delivery of quercetin (Que) stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice. We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1α in endothelial cells. Skin administration of a HIF-1α agonist partially recapitulates the pro-angiogenesis and hair-growing effects of Que. Together, these findings provide a molecular understanding for the efficacy of Que in hair regrowth, which underscores the translational potential of targeting the hair follicle niche as a strategy for regenerative medicine, and suggest a route of pharmacological intervention that may promote hair regrowth.
Mice
;
Animals
;
Quercetin/pharmacology*
;
Endothelial Cells
;
Hair
;
Hair Follicle
;
Alopecia
4.A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis.
Daoyuan HUANG ; Yuesheng ZUO ; Chen ZHANG ; Guoqiang SUN ; Ying JING ; Jinghui LEI ; Shuai MA ; Shuhui SUN ; Huifen LU ; Yusheng CAI ; Weiqi ZHANG ; Fei GAO ; Andy PENG XIANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Jing QU ; Si WANG
Protein & Cell 2023;14(12):888-907
The testis is pivotal for male reproduction, and its progressive functional decline in aging is associated with infertility. However, the regulatory mechanism underlying primate testicular aging remains largely elusive. Here, we resolve the aging-related cellular and molecular alterations of primate testicular aging by establishing a single-nucleus transcriptomic atlas. Gene-expression patterns along the spermatogenesis trajectory revealed molecular programs associated with attrition of spermatogonial stem cell reservoir, disturbed meiosis and impaired spermiogenesis along the sequential continuum. Remarkably, Sertoli cell was identified as the cell type most susceptible to aging, given its deeply perturbed age-associated transcriptional profiles. Concomitantly, downregulation of the transcription factor Wilms' Tumor 1 (WT1), essential for Sertoli cell homeostasis, was associated with accelerated cellular senescence, disrupted tight junctions, and a compromised cell identity signature, which altogether may help create a hostile microenvironment for spermatogenesis. Collectively, our study depicts in-depth transcriptomic traits of non-human primate (NHP) testicular aging at single-cell resolution, providing potential diagnostic biomarkers and targets for therapeutic interventions against testicular aging and age-related male reproductive diseases.
Animals
;
Male
;
Testis
;
Sertoli Cells/metabolism*
;
Transcriptome
;
Spermatogenesis/genetics*
;
Primates
;
Aging/genetics*
;
Stem Cells
5.mTORC2/RICTOR exerts differential levels of metabolic control in human embryonic, mesenchymal and neural stem cells.
Qun CHU ; Feifei LIU ; Yifang HE ; Xiaoyu JIANG ; Yusheng CAI ; Zeming WU ; Kaowen YAN ; Lingling GENG ; Yichen ZHANG ; Huyi FENG ; Kaixin ZHOU ; Si WANG ; Weiqi ZHANG ; Guang-Hui LIU ; Shuai MA ; Jing QU ; Moshi SONG
Protein & Cell 2022;13(9):676-682
6.Correction to: mTORC2/RICTOR exerts differential levels of metabolic control in human embryonic, mesenchymal and neural stem cells.
Qun CHU ; Feifei LIU ; Yifang HE ; Xiaoyu JIANG ; Yusheng CAI ; Zeming WU ; Kaowen YAN ; Lingling GENG ; Yichen ZHANG ; Huyi FENG ; Kaixin ZHOU ; Si WANG ; Weiqi ZHANG ; Guang-Hui LIU ; Shuai MA ; Jing QU ; Moshi SONG
Protein & Cell 2022;13(12):961-961
7.Low-dose chloroquine treatment extends the lifespan of aged rats.
Wei LI ; Zhiran ZOU ; Yusheng CAI ; Kuan YANG ; Si WANG ; Zunpeng LIU ; Lingling GENG ; Qun CHU ; Zhejun JI ; Piu CHAN ; Guang-Hui LIU ; Moshi SONG ; Jing QU ; Weiqi ZHANG
Protein & Cell 2022;13(6):454-461
8.Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis.
Jinghui LEI ; Xiaoyu JIANG ; Wei LI ; Jie REN ; Datao WANG ; Zhejun JI ; Zeming WU ; Fang CHENG ; Yusheng CAI ; Zheng-Rong YU ; Juan Carlos Izpisua BELMONTE ; Chunyi LI ; Guang-Hui LIU ; Weiqi ZHANG ; Jing QU ; Si WANG
Protein & Cell 2022;13(3):220-226
9.Single-nucleus transcriptomic landscape of primate hippocampal aging.
Hui ZHANG ; Jiaming LI ; Jie REN ; Shuhui SUN ; Shuai MA ; Weiqi ZHANG ; Yang YU ; Yusheng CAI ; Kaowen YAN ; Wei LI ; Baoyang HU ; Piu CHAN ; Guo-Guang ZHAO ; Juan Carlos Izpisua BELMONTE ; Qi ZHOU ; Jing QU ; Si WANG ; Guang-Hui LIU
Protein & Cell 2021;12(9):695-716
The hippocampus plays a crucial role in learning and memory, and its progressive deterioration with age is functionally linked to a variety of human neurodegenerative diseases. Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal function along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the aged microglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.
10. The comparison of 3D printing surgical guide and traditional occlusal splint in the treatment with facial asymmetry cases
Ming CAI ; Yusheng YANG ; Xudong WANG ; Biao LI ; Shunyao SHEN ; Tengfei JIANG ; Guofang SHEN
Chinese Journal of Plastic Surgery 2018;34(6):417-421
Objective:
To compare the surgical accuracy of the 3D printing surgical guide and traditional occlusal splint in the treatment of skeletal facial asymmetry cases.
Methods:
12 facial asymmetric patients underwent joint orthognathic and orthodontics treatments were included in this research. In the 3D printing group (

Result Analysis
Print
Save
E-mail