1.Effect of oxymatrine on expression of stem markers and osteogenic differentiation of periodontal ligament stem cells
Jing LUO ; Min YONG ; Qi CHEN ; Changyi YANG ; Tian ZHAO ; Jing MA ; Donglan MEI ; Jinpeng HU ; Zhaojun YANG ; Yuran WANG ; Bo LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):3992-3999
BACKGROUND:Human periodontal ligament stem cells are potential functional cells for periodontal tissue engineering.However,long-term in vitro culture may lead to reduced stemness and replicative senescence of periodontal ligament stem cells,which may impair the therapeutic effect of human periodontal ligament stem cells. OBJECTIVE:To investigate the effect of oxymatrine on the stemness maintenance and osteogenic differentiation of periodontal ligament stem cells in vitro,and to explore the potential mechanism. METHODS:Periodontal ligament stem cells were isolated from human periodontal ligament tissues by tissue explant enzyme digestion and cultured.The surface markers of mesenchymal cells were identified by flow cytometry.Periodontal ligament stem cells were incubated with 0,2.5,5,and 10 μg/mL oxymatrine.The effect of oxymatrine on the proliferation activity of periodontal ligament stem cells was detected by CCK8 assay.The appropriate drug concentration for subsequent experiments was screened.Western blot assay was used to detect the expression of stem cell non-specific proteins SOX2 and OCT4 in periodontal ligament stem cells.qRT-PCR and western blot assay were used to detect the expression levels of related osteogenic genes and proteins in periodontal ligament stem cells. RESULTS AND CONCLUSION:(1)The results of CCK8 assay showed that 2.5 μg/mL oxymatrine significantly enhanced the proliferative activity of periodontal stem cells,and the subsequent experiment selected 2.5 μg/mL oxymatrine to intervene.(2)Compared with the blank control group,the protein expression level of SOX2,a stem marker of periodontal ligament stem cells in the oxymatrine group did not change significantly(P>0.05),and the expression of OCT4 was significantly up-regulated(P<0.05).(3)Compared with the osteogenic induction group,the osteogenic genes ALP,RUNX2 mRNA expression and their osteogenic associated protein ALP protein expression of periodontal ligament stem cells were significantly down-regulated in the oxymatrine+osteogenic induction group(P<0.05).(4)The oxymatrine up-regulated the expression of stemness markers of periodontal ligament stem cells and inhibited the bone differentiation of periodontal ligament stem cells,and the results of high-throughput sequencing showed that it may be associated with WNT2,WNT16,COMP,and BMP6.
2.Ventral Hippocampal CA1 GADD45B Regulates Susceptibility to Social Stress by Influencing NMDA Receptor-Mediated Synaptic Plasticity.
Mengbing HUANG ; Jian BAO ; Xiaoqing TAO ; Yifan NIU ; Kaiwei LI ; Ji WANG ; Xiaokang GONG ; Rong YANG ; Yuran GUI ; Hongyan ZHOU ; Yiyuan XIA ; Youhua YANG ; Binlian SUN ; Wei LIU ; Xiji SHU
Neuroscience Bulletin 2025;41(3):406-420
Growth arrest DNA damage-inducible protein 45 β (GADD45B) has been reported to be a regulatory factor for active DNA demethylation and is implicated in the modulation of synaptic plasticity and chronic stress-related psychopathological processes. However, its precise role and mechanism of action in stress susceptibility remain elusive. In this study, we found a significant reduction in GADD45B expression specifically in the ventral, but not the dorsal hippocampal CA1 (dCA1) of stress-susceptible mice. Furthermore, we demonstrated that GADD45B negatively regulates susceptibility to social stress and NMDA receptor-dependent long-term potentiation (LTP) in the ventral hippocampal CA1 (vCA1). Importantly, through pharmacological inhibition using the NMDA receptor antagonist MK801, we provided further evidence supporting the hypothesis that GADD45B potentially modulates susceptibility to social stress by influencing NMDA receptor-mediated LTP. Collectively, these results suggested that modulation of NMDA receptor-mediated synaptic plasticity is a pivotal mechanism underlying the regulation of susceptibility to social stress by GADD45B.
Animals
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
CA1 Region, Hippocampal/drug effects*
;
Male
;
Stress, Psychological/physiopathology*
;
Mice
;
Neuronal Plasticity/drug effects*
;
Long-Term Potentiation/drug effects*
;
Mice, Inbred C57BL
;
Antigens, Differentiation/metabolism*
;
Dizocilpine Maleate/pharmacology*
;
Excitatory Amino Acid Antagonists/pharmacology*
;
GADD45 Proteins
3.Interleukin-33 Knockout Promotes High Mobility Group Box 1 Release from Astrocytes by Acetylation Mediated by P300/CBP-Associated Factor in Experimental Autoimmune Encephalomyelitis.
Yifan XIAO ; Liyan HAO ; Xinyi CAO ; Yibo ZHANG ; Qingqing XU ; Luyao QIN ; Yixuan ZHANG ; Yangxingzi WU ; Hongyan ZHOU ; Mengjuan WU ; Mingshan PI ; Qi XIONG ; Youhua YANG ; Yuran GUI ; Wei LIU ; Fang ZHENG ; Xiji SHU ; Yiyuan XIA
Neuroscience Bulletin 2025;41(7):1181-1197
High mobility group box 1 (HMGB1), when released extracellularly, plays a pivotal role in the development of spinal cord synapses and exacerbates autoimmune diseases within the central nervous system. In experimental autoimmune encephalomyelitis (EAE), a condition that models multiple sclerosis, the levels of extracellular HMGB1 and interleukin-33 (IL-33) have been found to be inversely correlated. However, the mechanism by which IL-33 deficiency enhances HMGB1 release during EAE remains elusive. Our study elucidates a potential signaling pathway whereby the absence of IL-33 leads to increased binding of P300/CBP-associated factor with HMGB1 in the nuclei of astrocytes, upregulating HMGB1 acetylation and promoting its release from astrocyte nuclei in the spinal cord of EAE mice. Conversely, the addition of IL-33 counteracts the TNF-α-induced increase in HMGB1 and acetylated HMGB1 levels in primary astrocytes. These findings underscore the potential of IL-33-associated signaling pathways as a therapeutic target for EAE treatment.
Animals
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Astrocytes/metabolism*
;
Interleukin-33/metabolism*
;
HMGB1 Protein/metabolism*
;
Acetylation
;
Mice, Knockout
;
Mice, Inbred C57BL
;
p300-CBP Transcription Factors/metabolism*
;
Mice
;
Spinal Cord/metabolism*
;
Cells, Cultured
;
Female
;
Signal Transduction
4.Effect of different interventions on joint attention in children aged three to six years with mild to moderate autism spectrum disorder
Yuran YANG ; Qian WANG ; Cuicui CHEN ; Xiaoxin DU
Chinese Journal of Rehabilitation Theory and Practice 2024;30(8):888-893
Objective To compare the effect of discrete trial training(DTT),pivotal response treatment(PRT)and a combination of DTT and PRT on joint attention in children aged three to six years with mild to moderate autism spectrum disor-der(ASD). Methods From January,2023 to March,2024,39 children with ASD aged 36 to 72 months in Tiger Children's Rehabili-tation Center in Shanghai were randomly divided into DTT,PRT and combination groups,who received DTT,PRT and a combination of DTT and PRT,respectively,for ten weeks.They were assessed with Joint Attention As-sessment Scale for children with ASD before and after intervention. Results Two cases in DTT group and one case in PRT group dropped down,resulting in a final sample of 36 cases.The main effects of group(F=11.225,P<0.001)and time(F=416.935,P<0.001)were significant,as well as the interaction(F=10.501,P<0.001),and the combination group was the best during intervention and follow-up(P<0.05). Conclusion Both DTT and PRT may improve joint attention in children with ASD,and the combination of DTT and PRT is the best.
5.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification
6.Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells.
Qiufen ZHANG ; Yingyi CHEN ; Duan NI ; Zhimin HUANG ; Jiacheng WEI ; Li FENG ; Jun-Cheng SU ; Yingqing WEI ; Shaobo NING ; Xiuyan YANG ; Mingzhu ZHAO ; Yuran QIU ; Kun SONG ; Zhengtian YU ; Jianrong XU ; Xinyi LI ; Houwen LIN ; Shaoyong LU ; Jian ZHANG
Acta Pharmaceutica Sinica B 2022;12(2):876-889
SIRT6 belongs to the conserved NAD+-dependent deacetylase superfamily and mediates multiple biological and pathological processes. Targeting SIRT6 by allosteric modulators represents a novel direction for therapeutics, which can overcome the selectivity problem caused by the structural similarity of orthosteric sites among deacetylases. Here, developing a reversed allosteric strategy AlloReverse, we identified a cryptic allosteric site, Pocket Z, which was only induced by the bi-directional allosteric signal triggered upon orthosteric binding of NAD+. Based on Pocket Z, we discovered an SIRT6 allosteric inhibitor named JYQ-42. JYQ-42 selectively targets SIRT6 among other histone deacetylases and effectively inhibits SIRT6 deacetylation, with an IC50 of 2.33 μmol/L. JYQ-42 significantly suppresses SIRT6-mediated cancer cell migration and pro-inflammatory cytokine production. JYQ-42, to our knowledge, is the most potent and selective allosteric SIRT6 inhibitor. This study provides a novel strategy for allosteric drug design and will help in the challenging development of therapeutic agents that can selectively bind SIRT6.
7.Co-fermentation of kitchen waste and excess sludge for organic acid production: a review.
Xuwei GUI ; Yifang LUO ; Zhenlun LI ; Ming NIE ; Yuran YANG ; Can ZHANG ; Jing LIU
Chinese Journal of Biotechnology 2021;37(2):448-460
Resource utilization is an effective way to cope with the rapid increase of kitchen waste and excess sludge, and volatile fatty acids produced by anaerobic fermentation is an important way of recycling organic waste. However, the single substrate limits the efficient production of volatile fatty acids. In recent years, volatile fatty acids produced by anaerobic co-fermentation using different substrates has been widely studied and applied. In this paper, we analyze the characteristics of fermentation to produce acid using kitchen waste and excess sludge alone or mixture. Influences of environmental factors and microbial community structure on the type and yield of volatile fatty acids in the anaerobic fermentation system are discussed in detail. Moreover, we propose future research directions, to provide a reference for recycling kitchen waste and excess sludge.
Anaerobiosis
;
Bioreactors
;
Fatty Acids, Volatile
;
Fermentation
;
Hydrogen-Ion Concentration
;
Microbiota
;
Organic Chemicals
;
Sewage
8.Application of optical coherence tomography in the diagnosis of congenital pseudarthrosis of tibia
Xueqiang NIU ; Yang LIU ; Fuyun LIU ; Weiming HU ; Yuran QU ; Long WEN
Chinese Journal of Applied Clinical Pediatrics 2021;36(7):529-532
Objective:To explore the feasibility of the application of optical coherence tomography (OCT) in the diagnosis of congenital pseudarthrosis of tibia (CPT) in children.Methods:Ten children with neurofibromatosis type Ⅰ (NF1) and CPT were treated in the Third Affiliated Hospital of Zhengzhou University from January 2016 to December 2019, and enrolled as the experimental group.The bone tissue samples were collected and subjected to OCT scanning after intraoperative observation and evaluation, and were contrasted with conventional histological examination.During the same period, the bone tissues of 5 non-NF1 and non-CPT induced-labor fetuses were collected as the control group for the above examination, and the bone tissue examination results of the experimental group and the control group were compared as well.Results:Compared with the bone tissues of the control group, that of the experimental group displayed thickening trabecular bone, part of trabecular bone fusion, disordered arrangement, proliferation and fatification of interstitial fibrous tissue.OCT scan can directly show the nerves and blood vessels in the bone tissue, scattered in adipose tissue.OCT scan showed that the bone tissues of the control group were neatly arranged, with dense and regular shadows.The bone tissues of the experimental group could be observed with strong refraction, loose arrangement, and disordered bone fractures, fibrous ossification, scattered nerves, blood vessels, and increased vacuolar fat cells.Conclusions:OCT can quickly and clearly scan the freshly isolated tissues and directly display the internal structure of the tissues.It is highly compatible with routine pathological examinations and can be an effective supplement to the pathological diagnosis of children with CPT and retain samples for subsequent genetic studies.

Result Analysis
Print
Save
E-mail