1.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
2.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
3.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Discovery of a novel thiophene carboxamide analogue as a highly potent and selective sphingomyelin synthase 2 inhibitor for dry eye disease therapy.
Jintong YANG ; Yiteng LU ; Kexin HU ; Xinchen ZHANG ; Wei WANG ; Deyong YE ; Mingguang MO ; Xin XIAO ; Xichen WAN ; Yuqing WU ; Shuxian ZHANG ; He HUANG ; Zhibei QU ; Yimin HU ; Yu CAO ; Jiaxu HONG ; Lu ZHOU
Acta Pharmaceutica Sinica B 2025;15(1):392-408
Dry eye disease (DED) is a prevalent and intractable ocular disease induced by a variety of causes. Elevated sphingomyelin (SM) levels and pro-inflammatory cytokines were detected on the ocular surface of DED patients, particularly in the meibomian glands. Sphingomyelin synthase 2 (SMS2), one of the proteins involved in SM synthesis, would light a novel way of developing a DED therapy strategy. Herein, we report the design and optimization of a series of novel thiophene carboxamide derivatives to afford 14l with an improved highly potent inhibitory activity on SM synthesis (IC50, SMS2 = 28 nmol/L). Moreover, 14l exhibited a notable protective effect of anti-inflammation and anti-apoptosis on human corneal epithelial cells (HCEC) under TNF-α-hyperosmotic stress conditions in vitro, with an acceptable ocular specific distribution (corneas and meibomian glands) and pharmacokinetics (PK) profiles (t 1/2, cornea = 1.11 h; t 1/2, meibomian glands = 4.32 h) in rats. Furthermore, 14l alleviated the dry eye symptoms including corneal fluorescein staining scores and tear secretion in a dose-dependent manner in mice. Mechanically, 14l reduced the mRNA expression of Tnf-α, Il-1β and Mmp-9 in corneas, as well as the proportion of very long chain SM in meibomian glands. Our findings provide a new strategy for DED therapy based on selective SMS2 inhibitors.
7.Progress in the treatment of Alzheimer′s disease by Chinese medicine extracts based on C . elegans model
Yuqing Pei ; Chunyu Xu ; Xindi Shao ; Yujie Zhu ; Siyue Zhou ; Zhiyi Zheng ; Fei Cheng ; Xuan Shi ; Zhangyue Chen
Acta Universitatis Medicinalis Anhui 2025;60(4):760-765
Abstract
Alzheimer′s disease(AD) is a common neurodegenerative disease. It has been found that AD is related to various pathogenic factors such as genetics, cardiovascular and cerebrovascular disease, and excessive phosphorylation of tau protein. However, no definitive conclusions on its pathogenesis have been reached. In this paper, the research progress on the pathogenesis of AD inC.elegansmodel and the therapeutic effects of traditional Chinese medicine extracts on AD are reviewed, providing a basis for further research on the alleviating effects of Chinese medicine extracts on AD.
8.Temporal Unfolding of Racial Ingroup Bias in Neural Responses to Perceived Dynamic Pain in Others.
Chenyu PANG ; Yuqing ZHOU ; Shihui HAN
Neuroscience Bulletin 2024;40(2):157-170
In this study, we investigated how empathic neural responses unfold over time in different empathy networks when viewing same-race and other-race individuals in dynamic painful conditions. We recorded magnetoencephalography signals from Chinese adults when viewing video clips showing a dynamic painful (or non-painful) stimulation to Asian and White models' faces to trigger painful (or neutral) expressions. We found that perceived dynamic pain in Asian models modulated neural activities in the visual cortex at 100 ms-200 ms, in the orbitofrontal and subgenual anterior cingulate cortices at 150 ms-200 ms, in the anterior cingulate cortex around 250 ms-350 ms, and in the temporoparietal junction and middle temporal gyrus around 600 ms after video onset. Perceived dynamic pain in White models modulated activities in the visual, anterior cingulate, and primary sensory cortices after 500 ms. Our findings unraveled earlier dynamic activities in multiple neural circuits in response to same-race (vs other-race) individuals in dynamic painful situations.
Adult
;
Humans
;
Brain Mapping
;
Pain
;
Empathy
;
Racism
;
Gyrus Cinguli/physiology*
;
Magnetic Resonance Imaging
;
Brain/physiology*
9.Development and influential factor analysis of pharmacy outpatient departments in 714 Chinese tertiary healthcare institutions
Long MEI ; Sa LI ; Yuqing ZHANG ; Shuo ZHOU ; Zengwei ZHAO ; Wei ZHANG ; Qunhong SHEN ; Jiancun ZHEN
China Pharmacy 2024;35(4):385-389
OBJECTIVE To investigate the basic situation of developing pharmacy outpatient departments in Chinese tertiary medical institutions and analyze the influencing factors. METHODS The research targeted the pharmacy outpatient department managers of hospitals and conducted a survey through Sojump in March 2023. Various independent variables were selected from the hospital’s own characteristics, the management of the pharmacy outpatient departments, and the construction of the pharmacist team for Logistic and linear regression analysis, with the aim of separately analyzing the factors influencing the establishment of pharmacy outpatient departments and the factors affecting the total number of patients served by these departments throughout the year 2022. RESULTS & CONCLUSIONS A total of 1 304 medical institutions of different levels nationwide participated in this survey, with 714 tertiary hospitals. Among the tertiary hospitals, 377 (52.80%) had established pharmacy outpatient departments, including 321 grade-A tertiary hospitals, 48 grade-B tertiary hospitals and 8 other tertiary hospitals. The 377 tertiary hospitals collectively operated 1 739 pharmacy outpatient departments, covering 19 specialized fields, with the highest proportion found in the cardiovascular field (including anticoagulation) at 16.45%. Tertiary hospitals in North China, Central China, East China and South China regions had more pharmacy outpatient departments. The establishment of pharmacy outpatient departments was found to be influenced by tertiary grade-B status (P=0.010) and the annual outpatient volume of the hospital (P=0.008), although the impact was relatively small. The factors influencing the number of patients served by pharmacy outpatient departments were the annual outpatient volume of the hospital (P=0.042) and the number of pharmacists engaged in clinical pharmacy work (P=0.004). The proportion of tertiary hospitals in China that have established pharmacy outpatient departments is insufficient. It is necessary to further accelerate the construction of pharmacy outpatient departments and appropriately expand the talent pool of hospital pharmacy teams based on the needs of pharmacy outpatient departments and patients, in order to meet the requirements of medical practice and patient care.
10.Establishment of specific chromatogram,chemical pattern recognition analysis and identification with different origins and counterfeit products of Uncariae Ramulus Cum Uncis
Yuqing HE ; Shengjun CHEN ; Haiqin ZHOU ; Run QIAN ; Chao GU ; Simei XIE ; Hongmei WEN
China Pharmacy 2024;35(5):566-571
OBJECTIVE To establish the ultra-high liquid chromatography (UPLC) characteristic spectrum of Uncariae Ramulus Cum Uncis from different producing areas, to conduct chemical pattern recognition analysis, and to identify the medicinal materials of their different origins and counterfeit products. METHODS UPLC method was adopted to establish the characteristic spectra of 43 batches of Uncariae Ramulus Cum Uncis from different origins; cluster analysis combined with principal component analysis were used to analyze their quality; Uncariae Ramulus Cum Uncis from different origins and counterfeit products were identified. RESULTS UPLC specific spectrum of Uncariae Ramulus Cum Uncis was established, and 13 common peaks were calibrated; peak 2 was identified as catechin, peak 3 as chlorogenic acid, peak 4 as cryptochlorogenic acid, peak 7 as isochlorogenic acid B, peak 8 as isodehydroguotenine, peak 9 as isooguotenine, peak 10 as dehydroguotenine, peak 11 as isochlorogenic acid C, peak 12 as goutenine, and peak 13 as camptothecin. Through cluster analysis, the medicinal materials of 43 batches of Uncariae Ramulus Cum Uncis could be divided into 5 categories according to their different origins. Further principal component analysis revealed that the principal component comprehensive scores of Uncariae Ramulus Cum Uncis produced in Jiangxi and Hunan were relatively high, ranging from 0.264 to 2.904. The specific chromatogram could effectively distinguish among the different origins and their counterfeit products of Uncariae Ramulus Cum Uncis. CONCLUSIONS The established UPLC specific chromatogram can be used for quality control of Uncariae Ramulus Cum Uncis, and the study found that the quality of Uncariae Ramulus Cum Uncis from Jiangxi and Hunan provinces is relatively good.


Result Analysis
Print
Save
E-mail