1.Distribution and drug resistance characteristics of Acinetobacter baumannii in the environment of a general hospital in Xuhui District of Shanghai from 2018 to 2023
Yan WANG ; Jing WANG ; Yuqing YAO ; Junjie ZHANG ; Zhiyao TENG ; Bingqing YAN ; Congcong ZHANG ; Lufang JIANG ; Liang TIAN
Shanghai Journal of Preventive Medicine 2025;37(6):476-483
ObjectiveTo analyze the distribution, drug resistance characteristics, and changing trends of Acinetobacter baumannii (AB) isolated from environmental surfaces and healthcare workers’ hands in a grade Ⅱ level A general hospital in Xuhui District of Shanghai from 2018 to 2023, and to provide reference for infection control in the hospital. MethodsEnvironmental samples were collected quarterly from critical surfaces and healthcare workers’ hands in the intensive care unit (ICU), geriatrics, and respiratory departments from 2018 to 2023. Clinical isolates were obtained from all patients with AB infections in ICU, geriatrics, respiratory department, rehabilitation department, infectious diseases department, emergency department, cardiology department, and orthopedics of the hospital from 2018 to 2023. Retrospective analyses were performed on AB detection rates, strain origins, resistance rates to commonly used antimicrobial agents, and resistance gene features, comparing the antimicrobial resistance between clinically isolated strains and environmentally isolated strains. ResultsFrom 2018 to 2023, a total of 1 416 samples were collected from the hospital and a total of 272 strains of AB were detected, with a positive detection rate of 19.21%. The detection rate gradually decreased year-on-year (χ2trend=45.290, P<0.001). The majority of samples originated from patient-contacted items (34.56%, 94/272), followed by shared items (26.84%, 73/272) and healthcare worker-contacted items (15.07%, 41/272). From 2018 to 2023, the resistance rate of AB on environmental surfaces and healthcare workers’ hands to commonly tested antibiotics in the hospital ranged from 10% to 40%. The resistance rates to cefotaxime (42.52%) and piperacillin (38.58%) were relative high, while the resistance to polymyxin E (1.57%), polymyxin B (2.36%), and doxycycline (3.94%) maintained low. The annual fluctuations in resistance to cefotaxime, piperacillin, ceftriaxone, tobramycin, doxycycline, minocycline and cotrimoxazole were statistically significant (all P<0.05). There were statistically significant differences in the resistance of clinical and environmental isolates to ampicillin/sulbactam, cefepime, ceftazidime, subamphetamine, meropenem, piperacillin, aztreonam, gentamicin, tobramycin, minocycline, ciprofloxacin, levofloxacin, and cotrimoxazole in the hospital from 2018 to 2023 (all P<0.05). The resistance rate of clinical isolates was generally high, especially to β-lactam and quinolone drugs, which were mostly above 80% [such as cefepime (93.86%), cefotaxime (97.37%), imipenem (98.25%), and ciprofloxacin (99.12%)]. The resistance rate of environmental isolated strains to similar antibiotics was relatively lower, mostly concentrated at 10%‒30%. The whole-genome sequencing of 34 carbapenem-resistant Acinetobacter baumannii (CRAB) strains isolated from the hospital environment in 2023 revealed that the main resistance mechanism was overexpression of efflux pumps (51.97%), followed by changes in target sites (32.46%). Among the 34 CRAB strains, carbapenem resistance genes OXA-23 and OXA-51 were detected in 6 strains (17.65%), while genes such as KPC, IMP, VIM, and SIM were not detected. ConclusionFrom 2018 to 2023, AB in the hospital environment exhibited high resistance rates to certain antimicrobial agents and carried multiple resistance genes, indicating a potential transmission risk. It is necessary to further strengthen bacterial resistance monitoring and hospital infection control, and use antibiotics reasonably.
2.Analysis and clinical characteristics of SLC26A4 gene mutations in 72 cases of large vestibular aqueduct syndrome.
Yuqing LIU ; Wenyu XIONG ; Yu LU ; Lisong LIANG ; Kejie YANG ; Li LAN ; Wei HAN ; Qing YE ; Min WANG ; Yuan ZHANG ; Fangying TAO ; Zuwei CAO ; Wei HUANG ; Xue YANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(7):603-609
Objective:To explore the genetic and clinical characteristics of Guizhou patients with enlarged vestibular aqueduct(EVA) syndrome through combined SLC26A4 variant analysis and clinical phenotype analysis. Methods:Seventy-two EVA patients underwent comprehensive genetic testing using a multiplex PCR-based deafness gene panel and next-generation sequencing(NGS). The audiological and temporal bone imaging characteristics were compared across mutation subtypes. Results:A total of 27 pathogenic loci of SLC26A4 were detected in 72 patients, including c.919-2A>G in 79.2%(57/72). A novel deletion(c.1703_1707+6del) was discovered. Among 65 cases, truncated mutations were 89.2%(58/65), 52.3%(34/65), 28(43.1%) and 7(10.8%). No significant differences were observed in the midpoint diameter of the vestibular aqueduct and the incidence of incomplete partitioning typeⅡ(IP-Ⅱ) of the cochlea among the three groups of patients. Moreover, there was no difference in the midpoint diameter of different vestibular pipes or the combination with IP-Ⅱ. Conclusion:The most common mutation site of SLC26A4 in EVA patients in Guizhou is c.919-2A>G, though genotype-phenotype correlations remain elusive. The detection of 27 mutation sites and the discovery of new mutation sites suggested the precise diagnostic significance of NGS technology in EVA patients in Guizhou.
Humans
;
Sulfate Transporters
;
Vestibular Aqueduct/abnormalities*
;
Mutation
;
Membrane Transport Proteins/genetics*
;
Hearing Loss, Sensorineural/genetics*
;
Male
;
Female
;
Child
;
Adolescent
;
Child, Preschool
;
Adult
;
Young Adult
;
Phenotype
;
High-Throughput Nucleotide Sequencing
3.YOD1 regulates microglial homeostasis by deubiquitinating MYH9 to promote the pathogenesis of Alzheimer's disease.
Jinfeng SUN ; Fan CHEN ; Lingyu SHE ; Yuqing ZENG ; Hao TANG ; Bozhi YE ; Wenhua ZHENG ; Li XIONG ; Liwei LI ; Luyao LI ; Qin YU ; Linjie CHEN ; Wei WANG ; Guang LIANG ; Xia ZHAO
Acta Pharmaceutica Sinica B 2025;15(1):331-348
Alzheimer's disease (AD) is the major form of dementia in the elderly and is closely related to the toxic effects of microglia sustained activation. In AD, sustained microglial activation triggers impaired synaptic pruning, neuroinflammation, neurotoxicity, and cognitive deficits. Accumulating evidence has demonstrated that aberrant expression of deubiquitinating enzymes is associated with regulating microglia function. Here, we use RNA sequencing to identify a deubiquitinase YOD1 as a regulator of microglial function and AD pathology. Further study showed that YOD1 knockout significantly improved the migration, phagocytosis, and inflammatory response of microglia, thereby improving the cognitive impairment of AD model mice. Through LC-MS/MS analysis combined with Co-IP, we found that Myosin heavy chain 9 (MYH9), a key regulator maintaining microglia homeostasis, is an interacting protein of YOD1. Mechanistically, YOD1 binds to MYH9 and maintains its stability by removing the K48 ubiquitin chain from MYH9, thereby mediating the microglia polarization signaling pathway to mediate microglia homeostasis. Taken together, our study reveals a specific role of microglial YOD1 in mediating microglia homeostasis and AD pathology, which provides a potential strategy for targeting microglia to treat AD.
4.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
5.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
6.Establishment of a genotyping method for the junior blood group and identification of a rare blood type with partial DVI.3 and Jr(a-)
Shuang LIANG ; Chunyan MO ; Xiaoyang LIU ; Yanli JI ; Yanlian LIANG ; Fan WU ; Guangping LUO ; Yuqing SU
Chinese Journal of Medical Genetics 2024;41(1):52-58
Objective:To develop a genotyping method for the Junior blood type and report on a rare blood type with Jr(a-).Methods:Healthy O-type RhD+ volunteer donors of the Shenzhen Blood Center from January to May 2021 ( n=1 568) and a pedigree with difficult cross-matching ( n=3) were selected as the study subjects. Serological methods were used for proband′s blood type identification, unexpected antibody identification, and antibody titer determination. Polymerase chain reaction-sequence specific primer (PCR-SSP) method was used for typing the proband′s RHD gene. ABCG2 gene coding region sequencing and a PCR-SSP genotyping method were established for determining the genotypes of the proband and his family members and screening of Jra antigen-negative rare blood type among the 1 568 blood donors. Results:The proband′s ABO and RhD blood types were respectively determined as B and partial D (RHDDVI.3/RHD01N.01), Junior blood type Jra antigen was negative, and plasma had contained anti-D and anti-Jra. Sequencing of the ABCG2 gene revealed that the proband′s genotype was ABGG201N.01/ABGG201N.01 [homozygous c. 376C>T (p.Gln126X) variants], which is the most common Jr(a-) blood type allele in the Asian population. Screening of the voluntary blood donors has detected no Jr(a-) rare blood type. Statistical analysis of the heterozygotes suggested that the allelic frequency for ABCG2*01N.01 (c.376T) was 0.45%, and the frequency of Jr(a-) rare blood type with this molecular background was about 0.2‰. Conclusion:A very rare case of partial DVI.3 type and Jr(a-) rare blood type has been identified. And a method for identifying the Junior blood type through sequencing the coding regions of the ABCG2 gene and PCR-SSP has been established.
7.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
8.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
9.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
10.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.

Result Analysis
Print
Save
E-mail