1.Osteogenic and Angiogenic Potency of VEGF165-Transfected Canine Bone Marrow Mesenchymal Cells Combined with Coral Hydroxyapatite in Vitro
Quanyin ZHANG ; Jie ZHANG ; Lin CHEN ; Yunjian FAN ; Jiazhen LONG ; Shuguang LIU
Tissue Engineering and Regenerative Medicine 2021;18(5):875-886
BACKGROUND:
To explore the osteogenic and angiogenic potential of human vascular endothelial growth factor 165 (hVEGF165) gene-transfected canine bone marrow mesenchymal stem cells (BMSCs) combined with coral hydroxyapatite (CHA) scaffold.
METHODS:
We constructed a lentiviral vector and transfected canine BMSCs with the best multiplicity of infection. Osteogenesis was induced in the transfected groups (GFP-BMSCs group and hVEGF-BMSCs group) and non-transfected group (BMSCs group), followed by the evaluation of alkaline phosphatase (ALP) activity and alizarin red S staining. Cells from the three groups were co-cultured with CHA granules, respectively to obtain the tissue-engineered bone. MTT assay and fluorescence microscopy were employed to assess cell proliferation and adhesion. The expression of osteogenic and angiogenic related genes and proteins were evaluated at 7, 14, 21, and 28 days post osteoinduction in cell culture alone and cell co-culture with CHA, respectively using RT-PCR and ELISA.
RESULTS:
The hVEGF165 gene was transfected into BMSCs successfully. Higher ALP activity and more calcified nodules were found in the hVEGF-BMSCs group than in the control groups (p < 0.001). Cells attached and proliferated in CHA particles. Both cells cultured alone and cells co-culture with CHA expressed more osteogenic and angiogenic related genes and proteins in the hVEGF-BMSCs group compared to the GFP-BMSCs and BMSCs groups (p < 0.05).
CONCLUSION
High expression of hVEGF165 in BMSCs potentially promote the osteogenic potential of BMSCs, and synergically drive the expression of other osteogenic and angiogenic factors. hVEGF-BMSCs co-cultured with CHA expressed more osteogenic and angiogenic related factors, creating a favorable microenvironment for osteogenesis and angiogenesis. Also, the findings have allowed for the construction of a CHA-hVEGF-BMSCs tissue-engineered bone.
2.Osteogenic and Angiogenic Potency of VEGF165-Transfected Canine Bone Marrow Mesenchymal Cells Combined with Coral Hydroxyapatite in Vitro
Quanyin ZHANG ; Jie ZHANG ; Lin CHEN ; Yunjian FAN ; Jiazhen LONG ; Shuguang LIU
Tissue Engineering and Regenerative Medicine 2021;18(5):875-886
BACKGROUND:
To explore the osteogenic and angiogenic potential of human vascular endothelial growth factor 165 (hVEGF165) gene-transfected canine bone marrow mesenchymal stem cells (BMSCs) combined with coral hydroxyapatite (CHA) scaffold.
METHODS:
We constructed a lentiviral vector and transfected canine BMSCs with the best multiplicity of infection. Osteogenesis was induced in the transfected groups (GFP-BMSCs group and hVEGF-BMSCs group) and non-transfected group (BMSCs group), followed by the evaluation of alkaline phosphatase (ALP) activity and alizarin red S staining. Cells from the three groups were co-cultured with CHA granules, respectively to obtain the tissue-engineered bone. MTT assay and fluorescence microscopy were employed to assess cell proliferation and adhesion. The expression of osteogenic and angiogenic related genes and proteins were evaluated at 7, 14, 21, and 28 days post osteoinduction in cell culture alone and cell co-culture with CHA, respectively using RT-PCR and ELISA.
RESULTS:
The hVEGF165 gene was transfected into BMSCs successfully. Higher ALP activity and more calcified nodules were found in the hVEGF-BMSCs group than in the control groups (p < 0.001). Cells attached and proliferated in CHA particles. Both cells cultured alone and cells co-culture with CHA expressed more osteogenic and angiogenic related genes and proteins in the hVEGF-BMSCs group compared to the GFP-BMSCs and BMSCs groups (p < 0.05).
CONCLUSION
High expression of hVEGF165 in BMSCs potentially promote the osteogenic potential of BMSCs, and synergically drive the expression of other osteogenic and angiogenic factors. hVEGF-BMSCs co-cultured with CHA expressed more osteogenic and angiogenic related factors, creating a favorable microenvironment for osteogenesis and angiogenesis. Also, the findings have allowed for the construction of a CHA-hVEGF-BMSCs tissue-engineered bone.
3.EXPRESSION OF BMP4 IN CNS NEURONS OF THE DEVELOPING RAT
Xiaotang FAN ; Yunjian HUANG ; Wenqin CAI ; Haiwei XU ; Jinhai ZHANG
Acta Anatomica Sinica 2002;0(06):-
Objective To examine the expression of BMP4 in CNS of the developing rat. Methods In situ hybridization histochemistry(ISHH) was carried out on tissue sections using specific digoxigenin\|labeled oligonucleotide probe. Results It showed that BMP4 mRNA positive cells were located mainly in cerebellum and olfactory at E16.Strong positive signal was seen in hypoglossal nucleus,and moderate signal also seen in spinocerebellar tract and spinal lemniscus at P1\|2.The number of BMP4 mRNA positive cells was increased in the frontal cortex,parietal cortex,and hippocampus subiculum at P1W.The peak of BMP4 expression was in cortex and periamydaloid cortex.Widely distributed BMP4 mRNA positive cells were detected in cortex and hippocampus of rats at P1M,strong positive signal was observed in temporal CNS at P3M,strong positive signal was observed in hippocampus,temporal corex and periamydaloid cortex,lateral nucleus of thalamus and paraventricular nucleus of hypothalamus.BMP4 mRNA positive cells were also found in corex,hippocampus,hypothalamus and thalamus at P18M.Conclusion\ These results indicated that BMP4 could play an important role in CNS development of rats.

Result Analysis
Print
Save
E-mail