1.Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK
Seung-On LEE ; Sang Hoon JOO ; Seung-Sik CHO ; Goo YOON ; Yung Hyun CHOI ; Jin Woo PARK ; Kwon-Yeon WEON ; Jung-Hyun SHIM
Biomolecules & Therapeutics 2025;33(2):344-354
Anticancer activities of Licochalcone D (LCD) in human colorectal cancer (CRC) cells HCT116 and oxaliplatin-resistant HCT116 (HCT116-OxR) were determined. Cell viability assay and soft agar assay were used to analyze antiproliferative activity of LCD.Flow cytometry was performed to determine effects of LCD on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. Western blot analysis was used to monitor levels of proteins involved in cell cycle and apoptosis signaling pathways. LCD suppressed the growth and anchorageindependent colony formation of both HCT116 and HCT116-OxR cells. Cell cycle analysis by flow cytometry indicated that LCD induced cell cycle arrest and increased cells in sub-G1 phase. In parallel with the antiproliferative effect of LCD, LCD up-regulated levels of p21 and p27 while downregulating cyclin B1 and cdc2. In addition, phosphorylation levels of JNK and p38 mitogen-activated protein kinase (MAPK) were increased by LCD. Inhibition of these kinases somehow prevented the antiproliferative effect of LCD. Moreover, LCD increased ROS and deregulated mitochondrial membrane potential, leading to the activation of multiple caspases. An ROS scavenger N-acetyl-cysteine (NAC) or pan-caspase inhibitor Z-VAD-FMK prevented the antiproliferative effect of LCD, supporting that ROS generation and caspase activation mediated LCD-induced apoptosis in CRC cells. In conclusion, LCD exerted antitumor activity in CRC cells by inducing ROS generation and phosphorylation of JNK and p38 MAPK. These results support that LCD could be further developed as a chemotherapeutic agent for treating CRC.
2.Impact of Distal Fusion Level on Sacroiliac Joint Degenerative Change Following Adolescent Idiopathic Scoliosis Surgery
Sang-Ho KIM ; Jae-Won SHIN ; Seong-Hwan MOON ; Kyung-Soo SUK ; Si-Young PARK ; Byung-Ho LEE ; Ji-Won KWON ; Joong Won HA ; Yung PARK ; Hak-Sun KIM
Yonsei Medical Journal 2025;66(2):103-110
Purpose:
To evaluate the relationship between distal fusion level in correction and fusion surgery for adolescent idiopathic scoliosis (AIS) and radiologic changes in the sacroiliac (SI) joint.
Materials and Methods:
This retrospective cohort study evaluated patients who underwent correction and fusion for AIS between 2005 and 2017 with at least 5 years of follow-up. We categorized patients into two groups: Group 1 (distal fusion above L2, 74 patients) and Group 2 (distal fusion at L3 and below, 52 patients). Radiologic parameters and SI joint changes were evaluated on plain radiographs obtained from preoperative to 5 years postoperatively. We also investigated other risk factors for SI joint change.
Results:
Analysis of demographic factors revealed no significant difference between the two groups. There was a significant difference in the incidence of SI joint change between Group 1 (5 patients, 6.75%) and Group 2 (18 patients, 34.61%), with Group 2 showing a faster increase in incidence according to the Kaplan-Meier method (p<0.0001). Preoperative lumbar lordosis (LL) and ΔLL had a significant relationship with SI joint changes [preoperative LL, hazard ratio (HR)=0.77, 95% confidence interval (CI)=0.64– 0.93, p=0.008; ΔLL, HR=0.79, 95% CI=0.67–0.95, p=0.01).
Conclusion
After AIS surgery, patients who had fusion to the lower lumbar vertebrae (L3 or L4) experienced a higher incidence and faster progression of degenerative changes in the SI joint. Low preoperative LL and inadequate correction of LL during the operation were also risk factors for SI joint degeneration.
3.Impact of Distal Fusion Level on Sacroiliac Joint Degenerative Change Following Adolescent Idiopathic Scoliosis Surgery
Sang-Ho KIM ; Jae-Won SHIN ; Seong-Hwan MOON ; Kyung-Soo SUK ; Si-Young PARK ; Byung-Ho LEE ; Ji-Won KWON ; Joong Won HA ; Yung PARK ; Hak-Sun KIM
Yonsei Medical Journal 2025;66(2):103-110
Purpose:
To evaluate the relationship between distal fusion level in correction and fusion surgery for adolescent idiopathic scoliosis (AIS) and radiologic changes in the sacroiliac (SI) joint.
Materials and Methods:
This retrospective cohort study evaluated patients who underwent correction and fusion for AIS between 2005 and 2017 with at least 5 years of follow-up. We categorized patients into two groups: Group 1 (distal fusion above L2, 74 patients) and Group 2 (distal fusion at L3 and below, 52 patients). Radiologic parameters and SI joint changes were evaluated on plain radiographs obtained from preoperative to 5 years postoperatively. We also investigated other risk factors for SI joint change.
Results:
Analysis of demographic factors revealed no significant difference between the two groups. There was a significant difference in the incidence of SI joint change between Group 1 (5 patients, 6.75%) and Group 2 (18 patients, 34.61%), with Group 2 showing a faster increase in incidence according to the Kaplan-Meier method (p<0.0001). Preoperative lumbar lordosis (LL) and ΔLL had a significant relationship with SI joint changes [preoperative LL, hazard ratio (HR)=0.77, 95% confidence interval (CI)=0.64– 0.93, p=0.008; ΔLL, HR=0.79, 95% CI=0.67–0.95, p=0.01).
Conclusion
After AIS surgery, patients who had fusion to the lower lumbar vertebrae (L3 or L4) experienced a higher incidence and faster progression of degenerative changes in the SI joint. Low preoperative LL and inadequate correction of LL during the operation were also risk factors for SI joint degeneration.
4.Impact of Distal Fusion Level on Sacroiliac Joint Degenerative Change Following Adolescent Idiopathic Scoliosis Surgery
Sang-Ho KIM ; Jae-Won SHIN ; Seong-Hwan MOON ; Kyung-Soo SUK ; Si-Young PARK ; Byung-Ho LEE ; Ji-Won KWON ; Joong Won HA ; Yung PARK ; Hak-Sun KIM
Yonsei Medical Journal 2025;66(2):103-110
Purpose:
To evaluate the relationship between distal fusion level in correction and fusion surgery for adolescent idiopathic scoliosis (AIS) and radiologic changes in the sacroiliac (SI) joint.
Materials and Methods:
This retrospective cohort study evaluated patients who underwent correction and fusion for AIS between 2005 and 2017 with at least 5 years of follow-up. We categorized patients into two groups: Group 1 (distal fusion above L2, 74 patients) and Group 2 (distal fusion at L3 and below, 52 patients). Radiologic parameters and SI joint changes were evaluated on plain radiographs obtained from preoperative to 5 years postoperatively. We also investigated other risk factors for SI joint change.
Results:
Analysis of demographic factors revealed no significant difference between the two groups. There was a significant difference in the incidence of SI joint change between Group 1 (5 patients, 6.75%) and Group 2 (18 patients, 34.61%), with Group 2 showing a faster increase in incidence according to the Kaplan-Meier method (p<0.0001). Preoperative lumbar lordosis (LL) and ΔLL had a significant relationship with SI joint changes [preoperative LL, hazard ratio (HR)=0.77, 95% confidence interval (CI)=0.64– 0.93, p=0.008; ΔLL, HR=0.79, 95% CI=0.67–0.95, p=0.01).
Conclusion
After AIS surgery, patients who had fusion to the lower lumbar vertebrae (L3 or L4) experienced a higher incidence and faster progression of degenerative changes in the SI joint. Low preoperative LL and inadequate correction of LL during the operation were also risk factors for SI joint degeneration.
5.Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK
Seung-On LEE ; Sang Hoon JOO ; Seung-Sik CHO ; Goo YOON ; Yung Hyun CHOI ; Jin Woo PARK ; Kwon-Yeon WEON ; Jung-Hyun SHIM
Biomolecules & Therapeutics 2025;33(2):344-354
Anticancer activities of Licochalcone D (LCD) in human colorectal cancer (CRC) cells HCT116 and oxaliplatin-resistant HCT116 (HCT116-OxR) were determined. Cell viability assay and soft agar assay were used to analyze antiproliferative activity of LCD.Flow cytometry was performed to determine effects of LCD on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. Western blot analysis was used to monitor levels of proteins involved in cell cycle and apoptosis signaling pathways. LCD suppressed the growth and anchorageindependent colony formation of both HCT116 and HCT116-OxR cells. Cell cycle analysis by flow cytometry indicated that LCD induced cell cycle arrest and increased cells in sub-G1 phase. In parallel with the antiproliferative effect of LCD, LCD up-regulated levels of p21 and p27 while downregulating cyclin B1 and cdc2. In addition, phosphorylation levels of JNK and p38 mitogen-activated protein kinase (MAPK) were increased by LCD. Inhibition of these kinases somehow prevented the antiproliferative effect of LCD. Moreover, LCD increased ROS and deregulated mitochondrial membrane potential, leading to the activation of multiple caspases. An ROS scavenger N-acetyl-cysteine (NAC) or pan-caspase inhibitor Z-VAD-FMK prevented the antiproliferative effect of LCD, supporting that ROS generation and caspase activation mediated LCD-induced apoptosis in CRC cells. In conclusion, LCD exerted antitumor activity in CRC cells by inducing ROS generation and phosphorylation of JNK and p38 MAPK. These results support that LCD could be further developed as a chemotherapeutic agent for treating CRC.
6.Impact of Distal Fusion Level on Sacroiliac Joint Degenerative Change Following Adolescent Idiopathic Scoliosis Surgery
Sang-Ho KIM ; Jae-Won SHIN ; Seong-Hwan MOON ; Kyung-Soo SUK ; Si-Young PARK ; Byung-Ho LEE ; Ji-Won KWON ; Joong Won HA ; Yung PARK ; Hak-Sun KIM
Yonsei Medical Journal 2025;66(2):103-110
Purpose:
To evaluate the relationship between distal fusion level in correction and fusion surgery for adolescent idiopathic scoliosis (AIS) and radiologic changes in the sacroiliac (SI) joint.
Materials and Methods:
This retrospective cohort study evaluated patients who underwent correction and fusion for AIS between 2005 and 2017 with at least 5 years of follow-up. We categorized patients into two groups: Group 1 (distal fusion above L2, 74 patients) and Group 2 (distal fusion at L3 and below, 52 patients). Radiologic parameters and SI joint changes were evaluated on plain radiographs obtained from preoperative to 5 years postoperatively. We also investigated other risk factors for SI joint change.
Results:
Analysis of demographic factors revealed no significant difference between the two groups. There was a significant difference in the incidence of SI joint change between Group 1 (5 patients, 6.75%) and Group 2 (18 patients, 34.61%), with Group 2 showing a faster increase in incidence according to the Kaplan-Meier method (p<0.0001). Preoperative lumbar lordosis (LL) and ΔLL had a significant relationship with SI joint changes [preoperative LL, hazard ratio (HR)=0.77, 95% confidence interval (CI)=0.64– 0.93, p=0.008; ΔLL, HR=0.79, 95% CI=0.67–0.95, p=0.01).
Conclusion
After AIS surgery, patients who had fusion to the lower lumbar vertebrae (L3 or L4) experienced a higher incidence and faster progression of degenerative changes in the SI joint. Low preoperative LL and inadequate correction of LL during the operation were also risk factors for SI joint degeneration.
7.Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK
Seung-On LEE ; Sang Hoon JOO ; Seung-Sik CHO ; Goo YOON ; Yung Hyun CHOI ; Jin Woo PARK ; Kwon-Yeon WEON ; Jung-Hyun SHIM
Biomolecules & Therapeutics 2025;33(2):344-354
Anticancer activities of Licochalcone D (LCD) in human colorectal cancer (CRC) cells HCT116 and oxaliplatin-resistant HCT116 (HCT116-OxR) were determined. Cell viability assay and soft agar assay were used to analyze antiproliferative activity of LCD.Flow cytometry was performed to determine effects of LCD on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. Western blot analysis was used to monitor levels of proteins involved in cell cycle and apoptosis signaling pathways. LCD suppressed the growth and anchorageindependent colony formation of both HCT116 and HCT116-OxR cells. Cell cycle analysis by flow cytometry indicated that LCD induced cell cycle arrest and increased cells in sub-G1 phase. In parallel with the antiproliferative effect of LCD, LCD up-regulated levels of p21 and p27 while downregulating cyclin B1 and cdc2. In addition, phosphorylation levels of JNK and p38 mitogen-activated protein kinase (MAPK) were increased by LCD. Inhibition of these kinases somehow prevented the antiproliferative effect of LCD. Moreover, LCD increased ROS and deregulated mitochondrial membrane potential, leading to the activation of multiple caspases. An ROS scavenger N-acetyl-cysteine (NAC) or pan-caspase inhibitor Z-VAD-FMK prevented the antiproliferative effect of LCD, supporting that ROS generation and caspase activation mediated LCD-induced apoptosis in CRC cells. In conclusion, LCD exerted antitumor activity in CRC cells by inducing ROS generation and phosphorylation of JNK and p38 MAPK. These results support that LCD could be further developed as a chemotherapeutic agent for treating CRC.
8.Impact of Distal Fusion Level on Sacroiliac Joint Degenerative Change Following Adolescent Idiopathic Scoliosis Surgery
Sang-Ho KIM ; Jae-Won SHIN ; Seong-Hwan MOON ; Kyung-Soo SUK ; Si-Young PARK ; Byung-Ho LEE ; Ji-Won KWON ; Joong Won HA ; Yung PARK ; Hak-Sun KIM
Yonsei Medical Journal 2025;66(2):103-110
Purpose:
To evaluate the relationship between distal fusion level in correction and fusion surgery for adolescent idiopathic scoliosis (AIS) and radiologic changes in the sacroiliac (SI) joint.
Materials and Methods:
This retrospective cohort study evaluated patients who underwent correction and fusion for AIS between 2005 and 2017 with at least 5 years of follow-up. We categorized patients into two groups: Group 1 (distal fusion above L2, 74 patients) and Group 2 (distal fusion at L3 and below, 52 patients). Radiologic parameters and SI joint changes were evaluated on plain radiographs obtained from preoperative to 5 years postoperatively. We also investigated other risk factors for SI joint change.
Results:
Analysis of demographic factors revealed no significant difference between the two groups. There was a significant difference in the incidence of SI joint change between Group 1 (5 patients, 6.75%) and Group 2 (18 patients, 34.61%), with Group 2 showing a faster increase in incidence according to the Kaplan-Meier method (p<0.0001). Preoperative lumbar lordosis (LL) and ΔLL had a significant relationship with SI joint changes [preoperative LL, hazard ratio (HR)=0.77, 95% confidence interval (CI)=0.64– 0.93, p=0.008; ΔLL, HR=0.79, 95% CI=0.67–0.95, p=0.01).
Conclusion
After AIS surgery, patients who had fusion to the lower lumbar vertebrae (L3 or L4) experienced a higher incidence and faster progression of degenerative changes in the SI joint. Low preoperative LL and inadequate correction of LL during the operation were also risk factors for SI joint degeneration.
9.Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin
Seung-On LEE ; Sang Hoon JOO ; Jin-Young LEE ; Ah-Won KWAK ; Ki-Taek KIM ; Seung-Sik CHO ; Goo YOON ; Yung Hyun CHOI ; Jin Woo PARK ; Jung-Hyun SHIM
Biomolecules & Therapeutics 2024;32(1):104-114
Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.
10.A Phase 1b/2a Study of GC1118 with 5-Fluorouracil, Leucovorin and Irinotecan (FOLFIRI) in Patients with Recurrent or Metastatic Colorectal Cancer
Keun-Wook LEE ; Sae-Won HAN ; Tae Won KIM ; Joong Bae AHN ; Ji Yeon BAEK ; Sang Hee CHO ; Howard LEE ; Jin Won KIM ; Ji-Won KIM ; Tae-You KIM ; Yong Sang HONG ; Seung-Hoon BEOM ; Yongjun CHA ; Yoonjung CHOI ; Seonhui KIM ; Yung-Jue BANG
Cancer Research and Treatment 2024;56(2):590-601
Purpose:
GC1118 is a novel antibody targeting epidermal growth factor receptor (EGFR) with enhanced blocking activity against both low- and high-affinity EGFR ligands. A phase 1b/2a study was conducted to determine a recommended phase 2 dose (RP2D) of GC1118 in combination with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) (phase 1b) and to assess the safety and efficacy of GC1118 plus FOLFIRI as a second-line therapy for recurrent/metastatic colorectal cancer (CRC) (phase 2a).
Materials and Methods:
Phase 1b was designed as a standard 3+3 dose-escalation study with a starting dose of GC1118 (3 mg/kg/week) in combination with biweekly FOLFIRI (irinotecan 180 mg/m2; leucovorin 400 mg/m2; 5-fluorouracil 400 mg/m2 bolus and 2,400 mg/m2 infusion over 46 hours) in patients with solid tumors refractory to standard treatments. The subsequent phase 2a part was conducted with objective response rate (ORR) as a primary endpoint. Patients with KRAS/NRAS/BRAF wild-type, EGFR-positive, recurrent/metastatic CRC resistant to the first-line treatment were enrolled in the phase 2a study.
Results:
RP2D of GC1118 was determined to be 3 mg/kg/wk in the phase 1b study (n=7). Common adverse drug reactions (ADRs) observed in the phase 2a study (n=24) were acneiform rash (95.8%), dry skin (66.7%), paronychia (58.3%), and stomatitis (50.0%). The most common ADR of ≥ grade 3 was neutropenia (33.3%). ORR was 42.5% (95% confidence interval [CI], 23.5 to 62.0), and median progression-free survival was 6.7 months (95% CI, 4.0-8.0).
Conclusion
GC1118 administered weekly at 3 mg/kg in combination with FOLFIRI appears as an effective and safe treatment option in recurrent/metastatic CRC.

Result Analysis
Print
Save
E-mail