1.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
2.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
3.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
4.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
5.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
6.Compression Neuropathy Caused by Pelvic Lymphocele after Laparoscopic Surgical Staging
Dong Jin CHAE ; Jong Bum PARK ; Mi Jin HONG ; Jungyun KIM ; Cho E. SIM ; Seung-Eun KIM ; Yung Jin LEE
Journal of Electrodiagnosis and Neuromuscular Diseases 2024;26(2):29-34
Lymphocele is a complication of pelvic surgery that infrequently leads to compressive neuropathy. We present a case of compressive obturator neuropathy resulting from lymphocele development after pelvic surgery. Electrodiagnostic studies revealed severe axonal disruption in the left obturator nerve, which is associated with poor functional recovery. This case underscores the role of electrodiagnostic testing in the diagnosis and rehabilitation of patients experiencing lower limb weakness following gynecological pelvic surgery.
7.Diagnosis of ADSSL1 Mutation-Induced Myopathy Through Electrophysiology and Genetic Tools
Dong Jin CHAE ; Yung Jin LEE ; Mi Jin HONG ; Cho E. SIM ; Seung-Eun KIM ; Jong Bum PARK
Journal of Electrodiagnosis and Neuromuscular Diseases 2024;26(2):35-39
Mutations in the adenylosuccinate synthase 1 (ADSSL1) gene, resulting in adenylosuccinate synthase deficiency, are a rare genetic anomaly characterized by muscular weakness, elevated serum creatine kinase levels, and pathological muscle findings. However, these clinical symptoms are similar to those observed in many other myopathies, increasing the risk of misdiagnosis. In an era of rapidly expanding genetic knowledge, the authors sought to verify the diagnostic utility of electromyography for genetic disorders. Through combined electrophysiological and genetic studies, a patient initially thought to have Becker’s muscular dystrophy was conclusively diagnosed with ADSSL1 mutagenic myopathy. This case underscores the importance of re-evaluating diseases that do not follow the typical clinical progression of traditional myopathies, especially in light of recent diagnostic advancements.
8.Protective effect of chlorophyllremoved ethanol extract of Lycium barbarum leaves against nonalcoholic fatty liver disease
Hansol LEE ; Eun Young BAE ; Kyung Ah KIM ; Sun Yung LY
Journal of Nutrition and Health 2023;56(2):123-139
Purpose:
This study was conducted to establish whether an ethanol extract of Lycium barbarum leaves (LLE) and an ethanol extract of Lycium barbarum leaves from which chlorophyll has been removed, denoted as LLE(Ch−), have a protective effect against hepatic fat accumulation.
Methods:
The inhibitory effects of LLE and LLE(Ch−) on liver fat accumulation were examined in C57BL/6 mice with non-alcoholic fatty liver disease (NAFLD) induced by an methionine and choline deficient diet and in HepG2 cells with palmitic acid-induced fat accumulation.
Results:
The plasma triglyceride, aspartate aminotransferase, and alanine aminotransferase levels were lower in the LLE(Ch−) group, whereas the plasma ALT activity decreased significantly in the LLE group. In both the LLE and the LLE(Ch−) groups, the triglyceride and cholesterol contents in the hepatic tissue were significantly reduced. A greater inhibitory effect on tissue fat accumulation was observed in the LLE(Ch−) group than in the LLE group. In HepG2 cells, LLE and LLE(Ch−) were non-toxic up to a concentration of 1,000 µg/mL. Compared to the control group, intracellular fat accumulation in the LLE and LLE(Ch−) groups were significantly reduced at concentrations of 200 µg/mL and 500 µg/mL, respectively. The expression of phosphorylated adenosine monophosphate-activated protein kinase and phosphorylated acetyl-CoA carboxylase in both LLE groups increased at the concentrations of 100 μg/mL and 500 μg/mL. The fatty acid synthase expression was suppressed in a concentration-dependent manner at 10 μg/mL.
Conclusion
The examined two ethanol extracts of LLE inhibit hepatic fat accumulation in NAFLD. This effect was more pronounced in the LLE(Ch−) group. Therefore, these 2 extracts have an anti-steatosis effect and can be used for NAFLD treatment.
9.Protective effect of Lycium barbarum leaf extracts on atopic dermatitis:in vitro and in vivo studies
Han Sol LEE ; Eun Young BAE ; Sun Yung LY
Nutrition Research and Practice 2023;17(5):855-869
BACKGROUND/OBJECTIVES:
Atopic dermatitis (AD) is a chronic disease with an increasing incidence globally; therefore, there is a growing demand for natural compounds effective in treating dermatitis. In this study, the protective effects of Lycium barbarum leaves with and without chlorophyll (LLE and LLE[Ch-]) on AD were investigated in animal models of AD and HaCaT cells. Further, we investigated whether LLE and LLE(Ch-) show any differences in physiological activity.MATERIALS/METHODS: AD was induced by 2,4-dinitrochlorobenzene (DNCB) for three weeks, while NC/Nga mice were fed LLE or LLE(Ch-) extracts for 7 weeks. Serum immunoglobulin E (IgE) and cytokine (tumor necrosis factor [TNF]-α, interleukin [IL]-6, and IL-4) concentrations and the degree of DNA fragmentation in lymphocytes were examined. A histopathological examination (haematoxylin & eosin staining and blue spots of toluidine) of the dorsal skin of mice was performed. To elucidate the mechanism of action, the expression of the thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) were measured in HaCaT cells.
RESULTS:
Serum IgE and cytokines (TNF-α and IL-6) levels as well as DNA fragmentation of lymphocytes were significantly decreased in AD-induced mice treated with LLE or LLE(Ch-) compared to those of the control group. The epidermal thickness of the dorsal skin and mast cell infiltration in the LLE group significantly reduced compared to that in the control group. The LLE extracts showed no cytotoxicity up to 1,000 µg/mL in HaCaT cells. LLE or LLE(Ch-)-treated group showed a reduction of TARC and MDC in TNF-α-and IFN-γ-stimulated HaCaT cells.
CONCLUSIONS
These results suggest that LLE potentially improves inflammation by reducing the expression of chemokines that inhibit T helper 2 cell migration. LLE(Ch-) showed similar effects to LLE on blood levels of IgE, TNF-α and IL-6 and protein expression in HaCat cells, but the ultimate effect of skin improvement was not statistically significant.Therefore, both LLE and LLE(Ch-) can be used as functional materials to alleviate AD, but LLE(Ch-) appears to require more research to improve inflammation.
10.Anti-inflammatory effects of the ethanol fraction of Spiraea prunifolia var. simpliciflora in RAW 264.7 cells
Jinhyung SUHR ; Hansol LEE ; Suhwan KIM ; Sung Jin LEE ; Eun Young BAE ; Sun Yung LY
Journal of Nutrition and Health 2022;55(1):59-69
Purpose:
Natural medicinal plant extracts have recently attracted attention as health beneficial foods and potential therapeutic agents for prevention of various diseases. This study was undertaken to measure the anti-inflammatory effect of the ethanol-water fraction obtained from the above-ground portion of Spiraea prunifolia var. simpliciflora, a wild-growing plant in Korea. The final fraction used in this study was the H 2 O-EtOH (40:60) fraction (SP60), which had the highest antioxidant activity, as determined in previous studies.
Methods:
The amounts of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β production were measured in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells exposed to SP60. Western blot was performed to measure the expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and the activation of nuclear factor (NF)-κB.
Results:
SP60 exerted no cytotoxicity up to concentrations of 125 μg/mL. The levels of inflammatory cytokines, such as NO, TNF-α, IL-6, and IL-1β, were significantly decreased in LPS-stimulated RAW264.7 cells exposed to SP60. In addition, the expression levels of iNOS, COX-2, and phosphorylated p65 showed a concentration-dependent decrease subsequent to SP60 treatment. These results indicate that SP60 inhibits the LPS-induced production of inflammatory cytokines, iNOS, and COX-2, by inhibiting the activation of NF-κB, which is responsible for the expression of inflammatory mediators.
Conclusion
The results presented in this study indicate that the H 2 O-EtOH (40:60) fraction (SP60) extracted from the above-ground portion of Spiraea prunifolia var. simpliciflora has

Result Analysis
Print
Save
E-mail