1.Evaluation methods for the rehabilitation efficacy of bidirectional closed-loop motor imagery brain-computer interface active rehabilitation training systems.
He PAN ; Peng DING ; Fan WANG ; Tianwen LI ; Lei ZHAO ; Wenya NAN ; Anmin GONG ; Yunfa FU
Journal of Biomedical Engineering 2025;42(3):431-437
The bidirectional closed-loop motor imagery brain-computer interface (MI-BCI) is an emerging method for active rehabilitation training of motor dysfunction, extensively tested in both laboratory and clinical settings. However, no standardized method for evaluating its rehabilitation efficacy has been established, and relevant literature remains limited. To facilitate the clinical translation of bidirectional closed-loop MI-BCI, this article first introduced its fundamental principles, reviewed the rehabilitation training cycle and methods for evaluating rehabilitation efficacy, and summarized approaches for evaluating system usability, user satisfaction and usage. Finally, the challenges associated with evaluating the rehabilitation efficacy of bidirectional closed-loop MI-BCI were discussed, aiming to promote its broader adoption and standardization in clinical practice.
Brain-Computer Interfaces
;
Humans
;
Imagination/physiology*
;
Imagery, Psychotherapy/methods*
2.A portable steady-state visual evoked potential brain-computer interface system for smart healthcare.
Yisen ZHU ; Zhouyu JI ; Shuran LI ; Haicheng WANG ; Yunfa FU ; Hongtao WANG
Journal of Biomedical Engineering 2025;42(3):455-463
This paper realized a portable brain-computer interface (BCI) system tailored for smart healthcare. Through the decoding of steady-state visual evoked potential (SSVEP), this system can rapidly and accurately identify the intentions of subjects, thereby meeting the practical demands of daily medical scenarios. Firstly, an SSVEP stimulation interface and an electroencephalogram (EEG) signal acquisition software were designed, which enable the system to execute multi-target and multi-task operations while also incorporating data visualization functionality. Secondly, the EEG signals recorded from the occipital region were decomposed into eight sub-frequency bands using filter bank canonical correlation analysis (FBCCA). Subsequently, the similarity between each sub-band signal and the reference signals was computed to achieve efficient SSVEP decoding. Finally, 15 subjects were recruited to participate in the online evaluation of the system. The experimental results indicated that in real-world scenarios, the system achieved an average accuracy of 85.19% in identifying the intentions of the subjects, and an information transfer rate (ITR) of 37.52 bit/min. This system was awarded third prize in the Visual BCI Innovation Application Development competition at the 2024 World Robot Contest, validating its effectiveness. In conclusion, this study has developed a portable, multifunctional SSVEP online decoding system, providing an effective approach for human-computer interaction in smart healthcare.
Brain-Computer Interfaces
;
Humans
;
Evoked Potentials, Visual/physiology*
;
Electroencephalography
;
Signal Processing, Computer-Assisted
;
Software
;
Adult
;
Male
3.Technical maturity and bubble risks of brain-computer interface (BCI): Considerations from research to industrial translation.
Journal of Biomedical Engineering 2025;42(4):651-659
Brain-computer interface (BCI) technology faces structural risks due to a misalignment between its technological maturity and industrialization expectations. This study used the Technology Readiness Level (TRL) framework to assess the status of major BCI paradigms-such as steady-state visual evoked potential (SSVEP), motor imagery, and P300-and found that they predominantly remained at TRL4 to TRL6, with few stable applications reaching TRL9. The analysis identified four interrelated sources of bubble risk: overly broad definitions of BCI, excessive focus on decoding performance, asynchronous translational progress, and imprecise terminology usage. These distortions have contributed to the misallocation of research resources and public misunderstanding. To foster the sustainable development of BCI, this paper advocated the establishment of a standardized TRL evaluation system, clearer terminological boundaries, stronger support for fundamental research, enhanced ethical oversight, and the implementation of inclusive and diversified governance mechanisms.
Brain-Computer Interfaces
;
Humans
;
Evoked Potentials, Visual
;
Electroencephalography
;
Event-Related Potentials, P300
4.Research on fatigue recognition based on graph convolutional neural network and electroencephalogram signals.
Song LI ; Yunfa FU ; Yan ZHANG ; Gong LU
Journal of Biomedical Engineering 2025;42(4):686-692
Electroencephalogram (EEG) serves as an effective indicator of detecting fatigue driving. Utilizing the open accessible Shanghai Jiao Tong University Emotion Electroencephalography Dataset (SEED-VIG), driving states are divided into three categories including awake, tired and drowsy for investigation. Given the characteristics of mutual influence and interdependence among EEG channels, as well as the consistency of the graph convolutional neural network (GCNN) structure, we designed an adjacency matrix based on the Pearson correlation coefficients of EEG signals among channels and their positional relationships. Subsequently, we developed a GCNN for recognition. The experimental results show that the average classification accuracy of driving state categories for 20 subjects, from the SEED-VIG dataset under the smooth feature of differential entropy (DE) linear dynamic system is 91.66%. Moreover, the highest classification accuracy can reach 98.87%, and the average Kappa coefficient is 0.83. This work demonstrates the reliability of this method and provides a guideline for the research field of safe driving brain computer interface.
Humans
;
Electroencephalography/methods*
;
Neural Networks, Computer
;
Fatigue/physiopathology*
;
Automobile Driving
;
Brain-Computer Interfaces
;
Signal Processing, Computer-Assisted
;
Convolutional Neural Networks
5.Ethical considerations for artificial intelligence-enhanced brain-computer interface.
Yuyu CAO ; Yuhang XUE ; Hengyuan YANG ; Fan WANG ; Tianwen LI ; Lei ZHAO ; Yunfa FU
Journal of Biomedical Engineering 2025;42(5):1085-1091
Artificial intelligence-enhanced brain-computer interfaces (BCI) are expected to significantly improve the performance of traditional BCIs in multiple aspects, including usability, user experience, and user satisfaction, particularly in terms of intelligence. However, such AI-integrated or AI-based BCI systems may introduce new ethical issues. This paper first evaluated the potential of AI technology, especially deep learning, in enhancing the performance of BCI systems, including improving decoding accuracy, information transfer rate, real-time performance, and adaptability. Building on this, it was considered that AI-enhanced BCI systems might introduce new or more severe ethical issues compared to traditional BCI systems. These include the possibility of making users' intentions and behaviors more predictable and manipulable, as well as the increased likelihood of technological abuse. The discussion also addressed measures to mitigate the ethical risks associated with these issues. It is hoped that this paper will promote a deeper understanding and reflection on the ethical risks and corresponding regulations of AI-enhanced BCIs.
Brain-Computer Interfaces/ethics*
;
Artificial Intelligence/ethics*
;
Humans
;
Deep Learning
;
User-Computer Interface
;
Electroencephalography
6.An emerging major: brain-computer interface major.
Hengyuan YANG ; Tianwen LI ; Lei ZHAO ; Xiaogang CHEN ; Jiahui PAN ; Yunfa FU
Journal of Biomedical Engineering 2024;41(6):1257-1264
Brain-computer interface (BCI) is a revolutionizing technology that disrupts traditional human-computer interaction by establishing direct communication and control between the brain and computer, bypassing the peripheral nervous and muscular systems. With the rapid advancement of BCI technology, growing application demands, and an increasing need for specialized BCI professionals, a new academic major-BCI major-has gradually emerged. However, few studies to date have discussed the interdisciplinary nature and training framework of this emerging major. To address this gap, this paper first introduced the application demands of BCI, including the demand for BCI technology in both medical and non-medical fields. The paper also described the interdisciplinary nature of the BCI major and the urgent need for specialized professionals in this field. Subsequently, a training program of the BCI major was presented, with careful consideration of the multidisciplinary nature of BCI research and development, along with recommendations for curriculum structure and credit distribution. Additionally, the facing challenges of the construction of the BCI major were analyzed, and suggested strategies for addressing these challenges were offered. Finally, the future of the BCI major was envisioned. It is hoped that this paper will provide valuable reference for the development and construction of the BCI major.
Brain-Computer Interfaces/trends*
;
Humans
;
Electroencephalography
;
User-Computer Interface
7.Ethics considerations on brain-computer interface technology.
Zhe ZHANG ; Xu ZHAO ; Yixin MA ; Peng DING ; Wenya NAN ; Anmin GONG ; Yunfa FU
Journal of Biomedical Engineering 2023;40(2):358-364
The development and potential application of brain-computer interface (BCI) technology is closely related to the human brain, so that the ethical regulation of BCI has become an important issue attracting the consideration of society. Existing literatures have discussed the ethical norms of BCI technology from the perspectives of non-BCI developers and scientific ethics, while few discussions have been launched from the perspective of BCI developers. Therefore, there is a great need to study and discuss the ethical norms of BCI technology from the perspective of BCI developers. In this paper, we present the user-centered and non-harmful BCI technology ethics, and then discuss and look forward on them. This paper argues that human beings can cope with the ethical issues arising from BCI technology, and as BCI technology develops, its ethical norms will be improved continuously. It is expected that this paper can provide thoughts and references for the formulation of ethical norms related to BCI technology.
Humans
;
Brain-Computer Interfaces
;
Technology
;
Brain
;
User-Computer Interface
;
Electroencephalography
8.Key technologies for intelligent brain-computer interaction based on magnetoencephalography.
Haotian XU ; Anmin GONG ; Peng DING ; Jiangong LUO ; Chao CHEN ; Yunfa FU
Journal of Biomedical Engineering 2022;39(1):198-206
Brain-computer interaction (BCI) is a transformative human-computer interaction, which aims to bypass the peripheral nerve and muscle system and directly convert the perception, imagery or thinking activities of cranial nerves into actions for further improving the quality of human life. Magnetoencephalogram (MEG) measures the magnetic field generated by the electrical activity of neurons. It has the unique advantages of non-contact measurement, high temporal and spatial resolution, and convenient preparation. It is a new BCI driving signal. MEG-BCI research has important brain science significance and potential application value. So far, few documents have elaborated the key technical issues involved in MEG-BCI. Therefore, this paper focuses on the key technologies of MEG-BCI, and details the signal acquisition technology involved in the practical MEG-BCI system, the design of the MEG-BCI experimental paradigm, the MEG signal analysis and decoding key technology, MEG-BCI neurofeedback technology and its intelligent method. Finally, this paper also discusses the existing problems and future development trends of MEG-BCI. It is hoped that this paper will provide more useful ideas for MEG-BCI innovation research.
Brain/physiology*
;
Brain-Computer Interfaces
;
Electroencephalography
;
Humans
;
Imagery, Psychotherapy
;
Magnetoencephalography
;
Technology
9.Applications, industrial transformation and commercial value of brain-computer interface technology.
Jiangong LUO ; Peng DING ; Anmin GONG ; Guixin TIAN ; Haotian XU ; Lei ZHAO ; Yunfa FU
Journal of Biomedical Engineering 2022;39(2):405-415
Brain-computer interface (BCI) is a revolutionary human-computer interaction technology, which includes both BCI that can output instructions directly from the brain to external devices or machines without relying on the peripheral nerve and muscle system, and BCI that bypasses the peripheral nerve and muscle system and inputs electrical, magnetic, acoustic and optical stimuli or neural feedback directly to the brain from external devices or machines. With the development of BCI technology, it has potential application not only in medical field, but also in non-medical fields, such as education, military, finance, entertainment, smart home and so on. At present, there is little literature on the relevant application of BCI technology, the current situation of BCI industrialization at home and abroad and its commercial value. Therefore, this paper expounds and discusses the above contents, which are expected to provide valuable information for the public and organizations, BCI researchers, BCI industry translators and salespeople, and improve the cognitive level of BCI technology, further promote the application and industrial transformation of BCI technology and enhance the commercial value of BCI, so as to serve mankind better.
Brain/physiology*
;
Brain-Computer Interfaces
;
Electroencephalography
;
Humans
;
Technology
;
User-Computer Interface
10.Neurofeedback technology based on functional near infrared spectroscopy imaging and its applications.
Mengqi LI ; Anmin GONG ; Wenya NAN ; Bojun XU ; Peng DING ; Yunfa FU
Journal of Biomedical Engineering 2022;39(5):1041-1049
Neurofeedback (NF) technology based on electroencephalogram (EEG) data or functional magnetic resonance imaging (fMRI) has been widely studied and applied. In contrast, functional near infrared spectroscopy (fNIRS) has become a new technique in NF research in recent years. fNIRS is a neuroimaging technology based on hemodynamics, which has the advantages of low cost, good portability and high spatial resolution, and is more suitable for use in natural environments. At present, there is a lack of comprehensive review on fNIRS-NF technology (fNIRS-NF) in China. In order to provide a reference for the research of fNIRS-NF technology, this paper first describes the principle, key technologies and applications of fNIRS-NF, and focuses on the application of fNIRS-NF. Finally, the future development trend of fNIRS-NF is prospected and summarized. In conclusion, this paper summarizes fNIRS-NF technology and its application, and concludes that fNIRS-NF technology has potential practicability in neurological diseases and related fields. fNIRS can be used as a good method for NF training. This paper is expected to provide reference information for the development of fNIRS-NF technology.
Neurofeedback/methods*
;
Spectroscopy, Near-Infrared/methods*
;
Brain/diagnostic imaging*
;
Magnetic Resonance Imaging
;
Technology

Result Analysis
Print
Save
E-mail