1.A Genetically Confirmed Korean Case of CANVAS: Cerebellar Ataxia, Neuropathy, and Vestibular Areflexia Syndrome
Seung Hee LEE ; Hee-Jae JUNG ; Ji-Hee YOON ; Gu-Hwan KIM ; June-Young KOH ; Yuna LEE ; Young Seok JU ; Eun-Jae LEE ; Beom Hee LEE ; Young-Min LIM ; Hyunjin KIM
Journal of the Korean Neurological Association 2025;43(1):45-49
Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is a neurodegenerative disorder caused by a biallelic expansion of pentanucleotide repeats in the RFC1 gene. Previous studies have reported up to 22% of patients with late-onset ataxia harbor this pathogenic repeat expansion. Despite its relatively high prevalence, CANVAS is often underdiagnosed because the disease is not well recognized and genetic testing is not performed in clinical practice. Here, we present a patient with characteristic clinical features, confirmed by genetic testing.
2.A Genetically Confirmed Korean Case of CANVAS: Cerebellar Ataxia, Neuropathy, and Vestibular Areflexia Syndrome
Seung Hee LEE ; Hee-Jae JUNG ; Ji-Hee YOON ; Gu-Hwan KIM ; June-Young KOH ; Yuna LEE ; Young Seok JU ; Eun-Jae LEE ; Beom Hee LEE ; Young-Min LIM ; Hyunjin KIM
Journal of the Korean Neurological Association 2025;43(1):45-49
Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is a neurodegenerative disorder caused by a biallelic expansion of pentanucleotide repeats in the RFC1 gene. Previous studies have reported up to 22% of patients with late-onset ataxia harbor this pathogenic repeat expansion. Despite its relatively high prevalence, CANVAS is often underdiagnosed because the disease is not well recognized and genetic testing is not performed in clinical practice. Here, we present a patient with characteristic clinical features, confirmed by genetic testing.
3.Applications of Single-Cell Omics Technologies for Induced Pluripotent Stem Cell-Based Cardiovascular Research
Hyunjoon KIM ; Sohee CHOI ; HyoJung HEO ; Su Han CHO ; Yuna LEE ; Dohyup KIM ; Kyung Oh JUNG ; Siyeon RHEE
International Journal of Stem Cells 2025;18(1):37-48
Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.
4.A Genetically Confirmed Korean Case of CANVAS: Cerebellar Ataxia, Neuropathy, and Vestibular Areflexia Syndrome
Seung Hee LEE ; Hee-Jae JUNG ; Ji-Hee YOON ; Gu-Hwan KIM ; June-Young KOH ; Yuna LEE ; Young Seok JU ; Eun-Jae LEE ; Beom Hee LEE ; Young-Min LIM ; Hyunjin KIM
Journal of the Korean Neurological Association 2025;43(1):45-49
Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is a neurodegenerative disorder caused by a biallelic expansion of pentanucleotide repeats in the RFC1 gene. Previous studies have reported up to 22% of patients with late-onset ataxia harbor this pathogenic repeat expansion. Despite its relatively high prevalence, CANVAS is often underdiagnosed because the disease is not well recognized and genetic testing is not performed in clinical practice. Here, we present a patient with characteristic clinical features, confirmed by genetic testing.
5.Study on Effective Designs for the Identification and Differentiation of Tablets Using KH Coder
Yuka SHONO ; Fumika NAKAGAWA ; Hitomi YAMAMOTO ; Saki GOBARA ; Yuna TOMATSU ; Hiromu MIYAZAKI ; Kenichi OGAWA ; Hidenori SAGARA
Japanese Journal of Drug Informatics 2025;26(4):186-197
Background: This study surveyed pharmacists registered with the Yamaguchi Prefectural Pharmacists Association to determine the key elements of tablet printing design that enhance visibility and distinguishability during dispensing.Objectives: The purpose of this study is to identify suitable design components for tablets that enhance visibility and distinguishability by utilizing text data.Methods: Given the high risk of medication errors due to similar-looking tablets, the study employed KH Coder for text mining analysis of free-text responses.Results: Results indicated that design elements such as "horizontal writing," "straight lines, " and "emphasis on characters" significantly improve visibility and distinguishability, particularly for similar-looking tablets. The findings from this study provide specific guidelines for optimal tablet design, aiming to improve pharmacists' efficiency and enhance medication safety.Conclusions: KH Coder proved to be a valuable tool for analyzing qualitative data in the medical field. While the study focused on pharmacists in Yamaguchi Prefecture, expanding the survey to a national scale is recommended to validate and generalize the findings. This research supports the development of standardized tablet designs that can minimize dispensing errors and ensure patient safety, highlighting the importance of effective tablet printing design in pharmaceutical practice.
6.Applications of Single-Cell Omics Technologies for Induced Pluripotent Stem Cell-Based Cardiovascular Research
Hyunjoon KIM ; Sohee CHOI ; HyoJung HEO ; Su Han CHO ; Yuna LEE ; Dohyup KIM ; Kyung Oh JUNG ; Siyeon RHEE
International Journal of Stem Cells 2025;18(1):37-48
Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.
7.Applications of Single-Cell Omics Technologies for Induced Pluripotent Stem Cell-Based Cardiovascular Research
Hyunjoon KIM ; Sohee CHOI ; HyoJung HEO ; Su Han CHO ; Yuna LEE ; Dohyup KIM ; Kyung Oh JUNG ; Siyeon RHEE
International Journal of Stem Cells 2025;18(1):37-48
Single-cell omics technologies have transformed our investigation of genomic, transcriptomic, and proteomic landscapes at the individual cell level. In particular, the application of single-cell RNA sequencing has unveiled the complex transcriptional variations inherent in cardiac cells, offering valuable perspectives into their dynamics. This review focuses on the integration of single-cell omics with induced pluripotent stem cells (iPSCs) in the context of cardiovascular research, offering a unique avenue to deepen our understanding of cardiac biology. By synthesizing insights from various single-cell technologies, we aim to elucidate the molecular intricacies of heart health and diseases. Beyond current methodologies, we explore the potential of emerging paradigms such as single-cell/spatial omics, delving into their capacity to reveal the spatial organization of cellular components within cardiac tissues. Furthermore, we anticipate their transformative role in shaping the future of cardiovascular research. This review aims to contribute to the advancement of knowledge in the field, offering a comprehensive perspective on the synergistic potential of transcriptomic analyses, iPSC applications, and the evolving frontier of spatial omics.
8.Relationship between physical activity and sarcopenia among elderly people in ten provinces (autonomous regions) of China, 2022—2023
Yuchen WANG ; Huijun WANG ; Yuna HE ; Chang SU ; Jiguo ZHANG ; Wenwen DU ; Xiaofang JIA ; Feifei HUANG ; Li LI ; Jing BAI ; Yanli WEI ; Xiaofan ZHANG ; Fangxu GUAN ; Yifei OUYANG
Journal of Environmental and Occupational Medicine 2025;42(6):661-667
Background The decline of physical activity in the elderly due to aging may increase the risk of sarcopenia. Currently, there is a lack of evidence from large natural populations on the relationship between PA and sarcopenia. Objective To explore the relationship between PA and sarcopenia in the elderly aged 60 years and above in 10 provinces (autonomous regions) of China. Methods Data were retrieved from the 2022—2023 round of the China Development and Nutrition Health Impact Cohort. Personal basic information and PA data were collected by questionnaire survey. Skeletal muscle mass was measured by bio-electrical impedance analysis, muscle strength was measured using a grip dynamometer, and physical performance was reflected by 6-meter walk speed. The Asian Working Group for Sarcopenia (AWGS) 2019 criteria were used to diagnose sarcopenia. Light physical activity (LPA) duration, moderate-to-vigorous physical activity (MVPA) duration, and total physical activity volume were calculated. A total of
9.Advances in the mechanisms underlying the contributions of thymocyte selection-associated high mobility group box to pathogen infections: a review
Yuanfeng WANG ; Tingting YING ; Junru WU ; Yuna HONG ; Haorui GUO ; Mingyue WANG ; Zhenke YANG ; Shuai WANG
Chinese Journal of Schistosomiasis Control 2025;37(5):561-568
Thymocyte selection-associated high mobility group box (TOX), a member of the high mobility group protein super-family, plays an important role in T cell development, functional maintenance, and exhaustion. It has been recently found that TOX exerts critical immunoregulatory functions during pathogen infections, and TOX expression is strongly associated with the intensity and tolerance of host immune responses. This review systematically summarizes the structural and functional features of TOX and focuses on its expression dynamics, mechanisms of action, and immunomodulatory effects during viral, bacterial, and parasitic infections, which provides a theoretical support to better understanding of the role of TOX in infectious diseases and provides new insights into development of potential immunotherapeutic strategies targeting TOX.
10.Characteristics of body height, body weight and body mass index distributions in children aged 3-17 years in China
Wei CAO ; Peipei XU ; Titi YANG ; Xuehong PANG ; Zhenyu YANG ; Yuying WANG ; Tao XU ; Bowen CHEN ; Wenhua ZHAO ; Qian ZHANG ; Yuna HE
Chinese Journal of Epidemiology 2024;45(11):1487-1493
Objective:To investigate the distribution characteristics of body height, body weight and body mass index (BMI) in children aged 3-17 years in China.Methods:Data were obtained from the National Nutrition and Health Systematic Survey in 0-18 years old children in China. The study selected 70 853 children aged 3-17 years from 28 urban and rural survey sites in 14 provinces (autonomous regions and municipalities) in 7 regions of China with multi-stage stratified cluster random sampling. M ( Q1, Q3) was used to describe the region, age and gender specific body height, body weight and BMI in the children aged 3-17 years. Wilcoxon rank sum test was used to compare the body height, body weight, and BMI between boys and girls in same age group. Kruskal-Wallis H rank sum test was used to compare the body height, body weight and BMI among boys in different age groups and among girls in different age groups, as well as among boys in same age group and among girls in same age group from different regions, and DSCF method was used for further pairwise comparisons. Results:In this study, the median body height and body weight were 172.0 cm and 62.9 kg in 17-year-old boys and 160.0 cm and 53.7 kg in 17-year-old girls. The median for children's body height, body weight, and BMI in most age groups were higher in northeastern and northern China than in southern China, and the differences could be observed until age 17 years. The differences in body weight and BMI in children in northeastern and northern China were greater in Q3 than in Q1 compared with southern China. Conclusions:The body height of children aged 3-17 years continues to increase in China. Northeastern and northern China have more children with higher bodyweight, showing an obvious body weight increase trend, to which close attention needs to be paid.


Result Analysis
Print
Save
E-mail