1.Status of Clinical Practice Guideline Information Platforms
Xueqin ZHANG ; Yun ZHAO ; Jie LIU ; Long GE ; Ying XING ; Simeng REN ; Yifei WANG ; Wenzheng ZHANG ; Di ZHANG ; Shihua WANG ; Yao SUN ; Min WU ; Lin FENG ; Tiancai WEN
Medical Journal of Peking Union Medical College Hospital 2025;16(2):462-471
Clinical practice guidelines represent the best recommendations for patient care. They are developed through systematically reviewing currently available clinical evidence and weighing the relative benefits and risks of various interventions. However, clinical practice guidelines have to go through a long translation cycle from development and revision to clinical promotion and application, facing problems such as scattered distribution, high duplication rate, and low actual utilization. At present, the clinical practice guideline information platform can directly or indirectly solve the problems related to the lengthy revision cycles, decentralized dissemination and limited application of clinical practice guidelines. Therefore, this paper systematically examines different types of clinical practice guideline information platforms and investigates their corresponding challenges and emerging trends in platform design, data integration, and practical implementation, with the aim of clarifying the current status of this field and providing valuable reference for future research on clinical practice guideline information platforms.
2.The Role of Skeletal Muscle Satellite Cells-mediated Muscle Regeneration in The Treatment of Age-related Sarcopenia
Wei-Xiu JI ; Jia-Lin LÜ ; Yi-Fan MA ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2025;52(8):2033-2050
Age-related sarcopenia is a progressive, systemic skeletal muscle disorder associated with aging. It is primarily characterized by a significant decline in muscle mass, strength, and physical function, rather than being an inevitable consequence of normal aging. Despite ongoing research, there is still no globally unified consensus among physicians regarding the diagnostic criteria and clinical indicators of this condition. Nonetheless, regardless of the diagnostic standards applied, the prevalence of age-related sarcopenia remains alarmingly high. With the global population aging at an accelerating rate, its incidence is expected to rise further, posing a significant public health challenge. Age-related sarcopenia not only markedly increases the risk of physical disability but also profoundly affects patients’ quality of life, independence, and overall survival. As such, the development of effective prevention and treatment strategies to mitigate its dual burden on both societal and individual health has become an urgent and critical priority. Skeletal muscle regeneration, a vital physiological process for maintaining muscle health, is significantly impaired in age-related sarcopenia and is considered one of its primary underlying causes. Skeletal muscle satellite cells (MSCs), also known as muscle stem cells, play a pivotal role in generating new muscle fibers and maintaining muscle mass and function. A decline in both the number and functionality of MSCs is closely linked to the onset and progression of sarcopenia. This dysfunction is driven by alterations in intrinsic MSC mechanisms—such as Notch, Wnt/β‑Catenin, and mTOR signaling pathways—as well as changes in transcription factors and epigenetic modifications. Additionally, the MSC microenvironment, including both the direct niche formed by skeletal muscle fibers and their secreted cytokines, and the indirect niche composed of extracellular matrix proteins and various cell types, undergoes age-related changes. Mitochondrial dysfunction and chronic inflammation further contribute to MSC impairment, ultimately leading to the development of sarcopenia. Currently, there are no approved pharmacological treatments for age-related sarcopenia. Nutritional intervention and exercise remain the cornerstone of therapeutic strategies. Adequate protein intake, coupled with sufficient energy provision, is fundamental to both the prevention and treatment of this condition. Adjuvant therapies, such as dietary supplements and caloric restriction, offer additional therapeutic potential. Exercise promotes muscle regeneration and ameliorates sarcopenia by acting on MSCs through various mechanisms, including mechanical stress, myokine secretion, distant cytokine signaling, immune modulation, and epigenetic regulation. When combined with a structured exercise regimen, adequate protein intake has been shown to be particularly effective in preventing age-related sarcopenia. However, traditional interventions may be inadequate for patients with limited mobility, poor overall health, or advanced sarcopenia. Emerging therapeutic strategies—such as miRNA mimics or inhibitors, gut microbiota transplantation, and stem cell therapy—present promising new directions for MSC-based interventions. This review comprehensively examines recent advances in MSC-mediated muscle regeneration in age-related sarcopenia and systematically discusses therapeutic strategies targeting MSC regulation to enhance muscle mass and strength. The goal is to provide a theoretical foundation and identify future research directions for the prevention and treatment of this increasingly prevalent condition.
3.Sesquiterpenoids from resin of Commiphora myrrha.
Hao HUANG ; Ran WANG ; Ya-Zhu YANG ; Jiao-Jiao YIN ; Yue LIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2025;50(3):702-707
The chemical constituents of Commiphora myrrha was investigated by column chromatography on silica gel, ODS, Sephadex LH-20, and semi-preparative HPLC. Their structures were elucidated by comprehensive spectroscopic methods including UV, IR, MS, NMR, as well as ECD calculation. Seven compounds were isolated from the dichloromethane-soluble fraction of C. myrrha and their structures were identified as(1S,2R,4S,5R,8S)-guaiane-2-hydroxy-7(11),10(15)-dien-6-oxo-12,8-olide(1), commipholide E(2), myrrhterpenoid H(3), myrrhterpenoid I(4), myrrhterpenoid E(5), 2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide(6), 8,12-epoxy-1α,9α-hydroxy-eudesma-7,11-diene-6-dione(7). Compound 1 was a new compound and named myrrhterpenoid P. Compound 7 was isolated from Commiphora genus for the first time. Compounds 2, 5, and 6 significantly inhibited nitric oxide(NO) production in LPS-stimulated RAW264.7 cells, with IC_(50) values of(49.67±4.16),(40.80±1.27),(47.22±0.87) μmol·L~(-1), respectively [indomethacin as the positive control, with IC_(50) value of(63.92±2.60) μmol·L~(-1)].
Commiphora/chemistry*
;
Animals
;
Mice
;
Resins, Plant/chemistry*
;
Sesquiterpenes/isolation & purification*
;
Molecular Structure
;
Nitric Oxide
;
Macrophages/metabolism*
;
RAW 264.7 Cells
;
Drugs, Chinese Herbal/pharmacology*
4.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
5.Structural identification for in vivo metabolites of proanthocyanidin B_2.
Wen-Hui ZHAO ; Hui-Ting TANG ; Jun LI ; Yue-Lin SONG ; Ke ZHANG ; Yun-Fang ZHAO
China Journal of Chinese Materia Medica 2025;50(10):2841-2852
Proanthocyanidin B_2(PAC-B_2), a polyphenolic dimeric compound comprising two epicatechin molecules linked by a C-C bond, is extensively found in traditional Chinese medicines, with anti-tumor and anti-oxidant activities. Given the limited bioavailability, a thorough investigation and comprehensive understanding of PAC-B_2 metabolism in vivo are essential for elucidating therapeutic forms and mechanisms. In the present study, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) in the negative ion mode was employed to acquire the MS/MS information of PAC-B_2 and metabolites in urine and feces samples of the rats administrated with PAC-B_2. Online energy-resolved MS(ER-MS) was applied as supplementary to obtain the full collision energy ramp-MS~2 spectra(FCER-MS~2) of isomers-of-interest, which implied comprehensive MS~2 information of targeted compounds. Finally, the possible metabolic pathways of PAC-B_2 in rats were proposed. The primary fragmentation behaviors of PAC-B_2 in the negative ion mode included quinone methide fission between C_4-C_8 bond, retro Diels-Alder cracking of F-ring, heterocyclic ring fission of C-ring, and neutral loss of small molecules such as H_2O. A total of 25 metabolites were tentatively elucidated in urine and feces samples of rats administrated with PAC-B_2 by fragmentation pattern and reported literature. Two groups of isomers, M3/M4/M5 and M9/M11, were confirmatively differentiated based on the relationships between optimal collision energy provided by FCER-MS~2 and bond properties, including bond length and bond dissociation energy. In addition to the ring-opening and methylation, PAC-B_2 could also be metabolized into epicatechin and low molecular weight phenolic acids, which were subsequently subjected to dehydroxylation, ring-opening, methylation, sulfation, and glucuronidation. The structural information provided by online ER-MS and FCER-MS~2 enabled the differentiation of isomers and improved the identification confidence. More importantly, the present study deeply analyzes the in vivo metabolic pathways of PAC-B_2, providing a basis for the research on the pharmacological mechanism of this compound.
Animals
;
Proanthocyanidins/urine*
;
Rats
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Feces/chemistry*
;
Molecular Structure
6.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
7.Study on strategies and methods for discovering risk of traditional Chinese medicine-related liver injury based on real-world data: an example of Corydalis Rhizoma.
Long-Xin GUO ; Li LIN ; Yun-Juan GAO ; Min-Juan LONG ; Sheng-Kai ZHU ; Ying-Jie XU ; Xu ZHAO ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2025;50(13):3784-3795
In recent years, there have been frequent adverse reactions/events associated with traditional Chinese medicine(TCM), especially liver injury related to traditional non-toxic TCM, which requires adequate attention. Liver injury related to traditional non-toxic TCM is characterized by its sporadic and insidious nature and is influenced by various factors, making its detection and identification challenging. There is an urgent need to develop a strategy and method for early detection and recognition of traditional non-toxic TCM-related liver injury. This study was based on national adverse drug reaction monitoring center big data, integrating methodologies such as reporting odds ratio(ROR), network toxicology, and computational chemistry, so as to systematically research the risk signal identification and evaluation methods for TCM-related liver injury. The optimized ROR method was used to discover potential TCM with a risk of liver injury, and network toxicology and computational chemistry were used to identify potentially high-risk TCM. Additionally, typical clinical cases were analyzed for confirmation. An integrated strategy of "discovery via big data, identification via dry/wet method, confirmation via typical cases, and precise risk prevention and control" was developed to identify the risk of TCM-related liver injury. Corydalis Rhizoma was identified as a TCM with high risk, and its toxicity-related substances and potential toxicity mechanisms were analyzed. The results revealed that liver injury is associated with components such as tetrahydropalmatine and tetrahydroberberine, with potential mechanisms related to immune-inflammatory pathways such as the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and Th17 cell differentiation. This paper innovatively integrated real-world evidence and computational toxicology methods, offering insights and technical support for establishing a risk discovery and identification strategy for TCM-related liver injury based on real-world big data, providing innovative ideas and strategies for guiding the safe and rational use of medication in clinical practices.
Corydalis/adverse effects*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Chemical and Drug Induced Liver Injury/etiology*
;
Medicine, Chinese Traditional/adverse effects*
;
Rhizome/adverse effects*
;
Male
;
Female
8.Analysis of risk factors, pathogenic bacteria characteristics, and drug resistance of postoperative surgical site infection in adults with limb fractures.
Yan-Jun WANG ; Zi-Hou ZHAO ; Shuai-Kun LU ; Guo-Liang WANG ; Shan-Jin MA ; Lin-Hu WANG ; Hao GAO ; Jun REN ; Zhong-Wei AN ; Cong-Xiao FU ; Yong ZHANG ; Wen LUO ; Yun-Fei ZHANG
Chinese Journal of Traumatology 2025;28(4):241-251
PURPOSE:
We carried out the study aiming to explore and analyze the risk factors, the distribution of pathogenic bacteria, and their antibiotic-resistance characteristics influencing the occurrence of surgical site infection (SSI), to provide valuable assistance for reducing the incidence of SSI after traumatic fracture surgery.
METHODS:
A retrospective case-control study enrolling 3978 participants from January 2015 to December 2019 receiving surgical treatment for traumatic fractures was conducted at Tangdu Hospital of Air Force Medical University. Baseline data, demographic characteristics, lifestyles, variables related to surgical treatment, and pathogen culture were harvested and analyzed. Univariate analyses and multivariate logistic regression analyses were used to reveal the independent risk factors of SSI. A bacterial distribution histogram and drug-sensitive heat map were drawn to describe the pathogenic characteristics.
RESULTS:
Included 3978 patients 138 of them developed SSI with an incidence rate of 3.47% postoperatively. By logistic regression analysis, we found that variables such as gender (males) (odds ratio (OR) = 2.012, 95% confidence interval (CI): 1.235 - 3.278, p = 0.005), diabetes mellitus (OR = 5.848, 95% CI: 3.513 - 9.736, p < 0.001), hypoproteinemia (OR = 3.400, 95% CI: 1.280 - 9.031, p = 0.014), underlying disease (OR = 5.398, 95% CI: 2.343 - 12.438, p < 0.001), hormonotherapy (OR = 11.718, 95% CI: 6.269 - 21.903, p < 0.001), open fracture (OR = 29.377, 95% CI: 9.944 - 86.784, p < 0.001), and intraoperative transfusion (OR = 2.664, 95% CI: 1.572 - 4.515, p < 0.001) were independent risk factors for SSI, while, aged over 59 years (OR = 0.132, 95% CI: 0.059 - 0.296, p < 0.001), prophylactic antibiotics use (OR = 0.082, 95% CI: 0.042 - 0.164, p < 0.001) and vacuum sealing drainage use (OR = 0.036, 95% CI: 0.010 - 0.129, p < 0.001) were protective factors. Pathogens results showed that 301 strains of 38 species of bacteria were harvested, among which 178 (59.1%) strains were Gram-positive bacteria, and 123 (40.9%) strains were Gram-negative bacteria. Staphylococcus aureus (108, 60.7%) and Enterobacter cloacae (38, 30.9%) accounted for the largest proportion. The susceptibility of Gram-positive bacteria to Vancomycin and Linezolid was almost 100%. The susceptibility of Gram-negative bacteria to Imipenem, Amikacin, and Meropenem exceeded 73%.
CONCLUSION
Orthopedic surgeons need to develop appropriate surgical plans based on the risk factors and protective factors associated with postoperative SSI to reduce its occurrence. Meanwhile, it is recommended to strengthen blood glucose control in the early stage of admission and for surgeons to be cautious and scientific when choosing antibiotic therapy in clinical practice.
Humans
;
Surgical Wound Infection/epidemiology*
;
Male
;
Female
;
Risk Factors
;
Retrospective Studies
;
Middle Aged
;
Adult
;
Case-Control Studies
;
Fractures, Bone/surgery*
;
Aged
;
Drug Resistance, Bacterial
;
Logistic Models
;
Anti-Bacterial Agents/therapeutic use*
;
Incidence
;
Bacteria/drug effects*
9.He's Yangchao Formula Ameliorates Premature Ovarian Insuf-ficiency via Remodeling Gut Microbiota to Promote Granulosa Cell Glycolysis.
Fangxuan LIN ; Qing LIU ; Ying ZHAO ; Yun CHEN ; Ruye WANG ; Chenyun MIAO ; Qin ZHANG
Journal of Zhejiang University. Medical sciences 2025;():1-10
OBJECTIVES:
To investigate the molecular mechanism by which He's Yangchao Formula improves ovarian function in premature ovarian insufficiency (POI) mice through intestinal flora modulation.
METHODS:
Forty female ICR mice (aged 6-8 weeks) were intraperitoneally injected with cyclophosphamide (150 mg/kg) to establish a POI model, while 10 untreated mice served as the blank control. Successfully modeled mice were randomly divided into four groups (n=10/group): low-dose He's Yangchao Formula (6 g crude herb/kg), high-dose He's Yangchao Formula (25 g crude herb/kg), positive control (estradiol), and model control (distilled water). Treatments were admin-istered daily by gavage for 6 weeks. Vaginal exfoliated cells were stained with Wright-Giemsa solution to monitor estrous cycles. Serum estradiol and follicle-stimulating hormone (FSH) levels were measured by ELISA. Ovarian FSH receptor (FSHR) expression was assessed by immunohistochemistry. Glycolysis-related proteins pyruvate kinase M2 (PKM2) and glucose transporter 4 (GLUT4) were analyzed by Western blotting and immuno-fluorescence. Fecal samples from blank control, model control, and high-dose groups underwent metagenomic sequencing to evaluate intestinal microbiota diversity and com-position.
RESULTS:
He's Yangchao Formula restored estrous cyclicity, increased serum estradiol (P<0.05), decreased serum FSH (P<0.05), and upregulated FSHR expression in granulosa cells (P<0.05). Metagenomic analysis revealed significant structural differences in intestinal flora among blank control, model control, and high-dose groups (P<0.01). The high-dose group showed reduced abundance of conditional pathogens (e.g., Alistipes, Prevotella, Odoribacter, Blautia, Rikenella) compared to the model control (P<0.05). Functional enrichment analysis indicated involvement of glycolysis-related pathways. Concordantly, PKM2 and GLUT4 expression was downregulated in the model control but upregulated in He's Yangchao Formula groups (P<0.05).
CONCLUSIONS
He's Yangchao Formula ameliorates POI in mice by remodeling intestinal flora structure, enhancing glycolytic activity, improving ovarian sex hormone secretion, increasing granulosa cell FSHR expression, and restoring estrous cyclicity.
10.Identification of Rare 3.5 kb Deletion in the β-Globin Gene Cluster.
Yun-Hua FAN ; Cui-Lin DUAN ; Sai-Li LUO ; Shi-Jun GE ; Chong-Fei YU ; Jue-Min XI ; Jia-You CHU ; Zhao-Qing YANG
Journal of Experimental Hematology 2025;33(1):175-179
OBJECTIVE:
To identify the gene mutation types of 4 suspected β-thalassemia patients in Yunnan Province, and to analyze the genotypes and hematological phenotypes.
METHODS:
Whole genome sequencing was performed on the samples of 4 suspected β-thalassemia patients from the Dai ethnic group in a thalassemia endemic area of Yunnan Province, whose hematological phenotypes were not consistent with the results of common thalassemia gene mutations. The mutations of β-globin gene clusters were confirmed by polymerase chain reaction (PCR) and Sanger DNA sequencing technology.
RESULTS:
The 3.5 kb deletion in β-globin gene cluster (NC_000011.10: g. 5224302-5227791del3490bp) was detected in 4 patients' samples, of which 1 case was also detected with HbE mutation and 1 case with CD17 mutation. These 2 patients displayed moderate anemia phenotype, while the two patients with only the 3.5 kb deletion presented with other mild anemia phenotype.
CONCLUSION
Heterozygous carriers with rare 3.5 kb deletion of the β-globin gene cluster may develop mild anemia, compound mutations of the 3.5 kb deletion with other mutations may led to intermediate thalasemia with moderate to sever anemia. In areas with a high incidence of thalassemia, suspected patients should undergo genetic testing to avoid missing or misdiagnosing rare mutations.
Humans
;
beta-Globins/genetics*
;
Multigene Family
;
beta-Thalassemia/genetics*
;
Mutation
;
Genotype
;
Sequence Deletion
;
Phenotype
;
Male
;
Female

Result Analysis
Print
Save
E-mail