1.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.
2.Dislocations deteriorate postoperative functional outcomes in supination-external rotation ankle fractures.
Sheng-Ye HU ; Mu-Min CAO ; Yuan-Wei ZHANG ; Liu SHI ; Guang-Chun DAI ; Ya-Kuan ZHAO ; Tian XIE ; Hui CHEN ; Yun-Feng RUI
Chinese Journal of Traumatology 2025;28(2):124-129
PURPOSE:
To assess the relationship between dislocation and functional outcomes in supination-external rotation (SER) ankle fractures.
METHODS:
A retrospective case series study was performed on patients with ankle fractures treated surgically at a large trauma center from January 2015 to December 2021. The inclusion criteria were young and middle-aged patients of 18 - 65 years with SER ankle fractures that can be classified by Lauge-Hansen classification and underwent surgery at our trauma center. Exclusion criteria were serious life-threatening diseases, open fractures, fractures delayed for more than 3 weeks, fracture sites ≥ 2, etc. Then patients were divided into dislocation and no-dislocation groups. Patient demographics, injury characteristics, surgery-related outcomes, and postoperative functional outcomes were collected and analyzed. The functional outcomes of SER ankle fractures were assessed postoperatively at 1-year face-to-face follow-up using the foot and ankle outcome score (FAOS) and American Orthopedic Foot and Ankle Society ankle hindfoot score and by 2 experienced orthopedic physicians. Relevant data were analyzed using SPSS version 22.0 by Chi-square or t-test.
RESULTS:
During the study period, there were 371 ankle fractures. Among them, 190 (51.2%) were SER patterns with 69 (36.3%) combined with dislocations. Compared with the no-dislocation group, the dislocation group showed no statistically significant differences in gender, age composition, fracture type, diabetes, or smoking history, preoperative waiting time, operation time, and length of hospital stay (all p > 0.05), but a significantly higher Lauge-Hansen injury grade (p < 0.001) and syndesmotic screw fixation rate (p = 0.033). Moreover, the functional recovery was poorer, revealing a significantly lower FAOS in the sport/rec scale (p < 0.001). Subgroup analysis showed that among SER IV ankle fracture patients, FAOS was much lower in pain (p = 0.042) and sport/rec scales (p < 0.001) for those with dislocations. American Orthopedic Foot and Ankle Society ankle hindfoot score revealed no significant difference between dislocation and no-dislocation patients.
CONCLUSION
Dislocation in SER ankle fractures suggests more severe injury and negatively affects functional recovery, mainly manifested as more pain and poorer motor function, especially in SER IV ankle cases.
Humans
;
Ankle Fractures/physiopathology*
;
Male
;
Female
;
Retrospective Studies
;
Adult
;
Middle Aged
;
Supination
;
Aged
;
Young Adult
;
Rotation
;
Joint Dislocations/surgery*
;
Fracture Fixation, Internal/methods*
;
Adolescent
;
Recovery of Function
;
Treatment Outcome
3.Cardiofaciocutaneous syndrome caused by microdeletion of chromosome 19p13.3: a case report and literature review.
Cui-Yun LI ; Ying XU ; Ru-En YAO ; Ying YU ; Xue-Ting CHEN ; Wei LI ; Hui ZENG ; Li-Ting CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(7):854-858
This article reports a child with cardioaciocutaneous syndrome (CFCS) caused by a rare microdeletion of chromosome 19p13.3, and a literature review is conducted. The child had unusual facies, short stature, delayed mental and motor development, macrocephaly, and cardiac abnormalities. Whole-exome sequencing identified a 1 040 kb heterozygous deletion in the 19p13.3 region of the child, which was rated as a "pathogenic variant". This is the first case of CFCS caused by a loss-of-function mutation reported in China, which enriches the genotype characteristics of CFCS. It is imperative to enhance the understanding of CFCS in children. Early identification based on its clinical manifestations should be pursued, and genetic testing should be performed to facilitate diagnosis.
Humans
;
Chromosome Deletion
;
Chromosomes, Human, Pair 19/genetics*
;
Ectodermal Dysplasia/genetics*
;
Facies
;
Failure to Thrive/genetics*
;
Heart Defects, Congenital/genetics*
4.Clinical features and immunotherapy for children with loss-of-function/gain-of-function mutations in the STAT gene: an analysis of 10 cases.
Hong-Wei LI ; Yan-Hong WANG ; Shang-Zhi WU ; Bi-Yun ZHANG ; Shi-Hui XU ; Jia-Xing XU ; Zhan-Hang HUANG ; Cheng-Yu LU ; De-Hui CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(8):951-958
OBJECTIVES:
To investigate the clinical features of children with STAT gene mutations, and to explore corresponding immunotherapy strategies.
METHODS:
A retrospective analysis was performed for the clinical data of 10 children with STAT gene mutations who were admitted to the Department of Pediatrics of the First Affiliated Hospital of Guangzhou Medical University, from October 2015 to October 2024. Exploratory immunotherapy was implemented in some refractory cases, and the changes in symptoms, imaging manifestations, and cytokine levels were assessed after treatment.
RESULTS:
For the 10 children, the main clinical manifestations were recurrent rash since birth (7/10), cough (8/10), wheezing (5/10), expectoration (4/10), and purulent nasal discharge (4/10). Genotyping results showed that there was one child with heterozygous loss-of-function (LOF) mutation in the STAT1 gene, four children with heterozygous LOF mutation in the STAT3 gene, and five children with heterozygous gain-of-function (GOF) mutation in the STAT3 gene. Two children with LOF mutation in the STAT3 gene showed decreased interleukin-6 levels and improved clinical symptoms and imaging findings after omalizumab treatment. Three children with GOF mutation in the STAT3 gene achieved effective disease control after treatment with methylprednisolone (0.5 mg/kg per day). Two children with GOF mutation in the STAT3 gene received treatment with JAK inhibitor and then showed some improvement in symptoms.
CONCLUSIONS
STAT gene mutation screening should be considered for children with recurrent rash and purulent respiratory tract infections. Targeted immunotherapy may improve prognosis in patients with no response to conventional treatment.
Humans
;
Male
;
Immunotherapy
;
Female
;
Child, Preschool
;
Child
;
Gain of Function Mutation
;
Retrospective Studies
;
Infant
;
Loss of Function Mutation
;
STAT Transcription Factors/genetics*
5.Retrospective Analysis of Venetoclax Combined with Azacitidine Compared with "3+7" or Similar Regimens for Newly Diagnosed Patients with Acute Myeloid Leukemia.
Lu-Lu WANG ; Juan ZHANG ; Yue ZHANG ; Yong ZHANG ; Xiao-Min DONG ; Dan-Yang ZHANG ; Ting-Ting CHEN ; Yun-Hui ZHOU ; Teng WANG ; Hui-Ling LAN ; He-Bing ZHOU
Journal of Experimental Hematology 2025;33(3):672-681
OBJECTIVE:
To retrospectively analyze the clinical data of newly diagnosed acute myeloid leukemia (AML) patients treated with venetoclax combined with azacitidine (Ven/Aza) or standard "3+7" regimen and similar regimens, collect real-world study data, compare the treatment response and adverse events between the two regimens, as well as perform survival analysis.
METHODS:
To retrospectively analyze the efficacy, survival, and adverse reactions of newly diagnosed AML patients treated with Ven/Aza (24 cases) and "3+7" regimens (117 cases ) in our hospital from September 2009 to March 2023, as well as factors influencing outcomes. A propensity score matching (PSM) was performed on age and Eastern Cooperative Oncology Group performance status (ECOG PS) to obtain a 1:1 matched cohort of 20 pairs, and the efficacy and survival before and after the matching were compared.
RESULTS:
The median age of patients in the Ven/Aza group was 69 years, while that in the "3+7" group was 56 years (P <0.001). Objective remission rate (ORR) was 62.5% in Ven/Aza group and 74.8% in "3+7" group (P >0.05). The median overall survival (OS) in the Ven/Aza group was 522 days, while that in the "3+7" group was 1 002 days (P >0.05). After controlling the two variables of age and ECOG PS, a PSM cohort of 20 pairs was obtained, in which the ORR was 65% in Ven/Aza group and 60% in "3+7" group (P >0.05). The median OS was 522 days and 629 days, and median progression-free survival (PFS) was 531 days and 198 days between the two groups, respectively. There were no statistically significant differences in OS and PFS between the two groups (both P >0.05). Additionally, the incidence of adverse events in the Ven/Aza group was significantly reduced.
CONCLUSION
The overall cohort shows that the "3+7" regimen has advantages in efficacy and survival, but Ven/Aza regimen is relatively safer. After performing PSM on age and ECOG PS, the Ven/Aza group showed improved efficacy, and a longer median PFS compared to "3+7" group.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Retrospective Studies
;
Sulfonamides/administration & dosage*
;
Azacitidine/administration & dosage*
;
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage*
;
Aged
;
Middle Aged
;
Male
;
Female
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Treatment Outcome
6.Clinical implication of post-angioplasty quantitative flow ratio in the patients with coronary artery de novo lesions underwent drug-coated balloons treatment.
Yun-Hui ZHU ; Xu-Lin HONG ; Tian-Li HU ; Qian-Qian BIAN ; Yu-Fei CHEN ; Tian-Ping ZHOU ; Jing LI ; Guo-Sheng FU ; Wen-Bin ZHANG
Journal of Geriatric Cardiology 2025;22(3):332-343
BACKGROUND:
Quantitative flow ratio (QFR) holds significant value in guiding drug-coated balloon (DCB) treatment and enhancing outcomes. However, the predictive capability of post-angioplasty QFR for long-term clinical events in patients with de novo lesions who receive DCB treatment remains uncertain. The aim of this study was to explore the potential significance of post-angioplasty QFR measurements in predicting clinical outcomes in patients underwent DCB treatment for de novo lesions.
METHODS:
Patients who underwent DCB-only intervention for de novo lesions were enrolled. QFR was conducted after DCB treatment. The patients were then categorized based on post-angioplasty QFR. The primary endpoint was major adverse cardiac events (MACE), encompassing all-cause death, cardiovascular death, nonfatal myocardial infarction, stroke, and target vessel revascularization.
RESULTS:
A total of 553 patients with 561 lesions were included. The median follow-up period was 505 days, during which 66 (11.8%) MACEs occurred. Based on post-procedural QFR grouping, there were 259 cases in the high QFR group (QFR > 0.93) and 302 cases in the low QFR group (QFR ≤ 0.93). Kaplan-Meier analysis revealed a significantly higher cumulative incidence of MACE in the low QFR group (log-rank P = 0.004). The multivariate Cox proportional hazards model demonstrated a significant inverse correlation between QFR and the occurrence of MACEs (HR = 0.522, 95%CI: 0.289-0.942, P = 0.031). Landmark analysis indicated that high QFR had a significant reducing effect on the cumulative incidence of MACEs within 1 year (log-rank P = 0.016) and 1-5 years (log-rank P = 0.026).
CONCLUSIONS
In patients who underwent DCB-only treatment for de novo lesions, higher post-procedural QFR values (> 0.93) were identified as an independent protective factor against adverse prognosis.
7.Efficacy and Safety of Yangxue Qingnao Pills Combined with Amlodipine in Treatment of Hypertensive Patients with Blood Deficiency and Gan-Yang Hyperactivity: A Multicenter, Randomized Controlled Trial.
Fan WANG ; Hai-Qing GAO ; Zhe LYU ; Xiao-Ming WANG ; Hui HAN ; Yong-Xia WANG ; Feng LU ; Bo DONG ; Jun PU ; Feng LIU ; Xiu-Guang ZU ; Hong-Bin LIU ; Li YANG ; Shao-Ying ZHANG ; Yong-Mei YAN ; Xiao-Li WANG ; Jin-Han CHEN ; Min LIU ; Yun-Mei YANG ; Xiao-Ying LI
Chinese journal of integrative medicine 2025;31(3):195-205
OBJECTIVE:
To evaluate the clinical efficacy and safety of Yangxue Qingnao Pills (YXQNP) combined with amlodipine in treating patients with grade 1 hypertension.
METHODS:
This is a multicenter, randomized, double-blind, and placebo-controlled study. Adult patients with grade 1 hypertension of blood deficiency and Gan (Liver)-yang hyperactivity syndrome were randomly divided into the treatment or the control groups at a 1:1 ratio. The treatment group received YXQNP and amlodipine besylate, while the control group received YXQNP's placebo and amlodipine besylate. The treatment duration lasted for 180 days. Outcomes assessed included changes in blood pressure, Chinese medicine (CM) syndrome scores, symptoms and target organ functions before and after treatment in both groups. Additionally, adverse events, such as nausea, vomiting, rash, itching, and diarrhea, were recorded in both groups.
RESULTS:
A total of 662 subjects were enrolled, of whom 608 (91.8%) completed the trial (306 in the treatment and 302 in the control groups). After 180 days of treatment, the standard deviations and coefficients of variation of systolic and diastolic blood pressure levels were lower in the treatment group compared with the control group. The improvement rates of dizziness, headache, insomnia, and waist soreness were significantly higher in the treatment group compared with the control group (P<0.05). After 30 days of treatment, the overall therapeutic effects on CM clinical syndromes were significantly increased in the treatment group as compared with the control group (P<0.05). After 180 days of treatment, brachial-ankle pulse wave velocity, ankle brachial index and albumin-to-creatinine ratio were improved in both groups, with no statistically significant differences (P>0.05). No serious treatment-related adverse events occurred during the study period.
CONCLUSIONS
Combination therapy of YXQNP with amlodipine significantly improved symptoms such as dizziness and headache, reduced blood pressure variability, and showed a trend toward lowering urinary microalbumin in hypertensive patients. These findings suggest that this regimen has good clinical efficacy and safety. (Registration No. ChiCTR1900022470).
Humans
;
Amlodipine/adverse effects*
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Hypertension/complications*
;
Middle Aged
;
Treatment Outcome
;
Drug Therapy, Combination
;
Adult
;
Blood Pressure/drug effects*
;
Double-Blind Method
;
Aged
;
Antihypertensive Agents/adverse effects*
8.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
9.Virtual reality-based cognitive training for MCI in the elderly: A feasibility randomised pilot study.
Zaylea KUA ; Rebecca Hui Shan ONG ; Nicole Yun Ching CHEN ; Peng Soon YOON ; Samuel Teong Huang CHEW ; YanHong DONG ; Louisa Mei Ying TAN
Annals of the Academy of Medicine, Singapore 2025;54(7):445-447
10.Compound Danshen Tablets ameliorate myocardial ischemia/reperfusion injury-induced ventricular remodeling by regulating autophagy via AMPK/mTOR signaling pathway.
Qiaoyu LI ; Yun LUO ; Haibiao GUO ; Wenxiu LIU ; Hui YU ; Chuyuan LI ; Rongchang CHEN ; Xiaobo SUN
Chinese Herbal Medicines 2025;17(3):548-554
OBJECTIVE:
Left ventricular remodeling induced by myocardial ischemia/reperfusion injury (MI/RI) is a common cardiac dysfunction. Accumulating evidence has demonstrated that autophagy plays a vital role in protecting against ventricular remodeling. This study aims to investigate the performance of Compound Danshen Tablets (CDT) in rescuing ventricular remodeling and whether autophagy as the potential mechanism.
METHODS:
The left anterior descending arteries of rats were temporarily ligated for 30 min to construct the MI/RI model. Ventricular remodeling was induced by reperfusion for 28 d, during which the MI/RI rats were administered CDT (300 mg/kg and 600 mg/kg), atorvastatin (2 mg/kg), and diltiazem (16 mg/kg). Cardiac function and structure were examined by echocardiography. Immunohistochemistry, Masson's trichrome staining, and hematoxylin-eosin (HE) staining were utilized to assess the fibrosis and histological alterations in the heart tissue. The expression of autophagy-related proteins was detected using Western blotting.
RESULTS:
CDT attenuated the cardiac dysfunction, structural changes, histopathological changes and fibrosis induced by MI/RI. CDT significantly enhanced the level of Beclin1 and microtubule-associated protein 1 light chain 3 beta (LC3β), and reduced p62 levels in MI/RI rats. Moreover, CDT significantly increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and inhibited mammalian target of rapamycin (mTOR) phosphorylation.
CONCLUSION
CDT ameliorated MI/RI-induced ventricular remodeling by activating autophagy and improving autophagic flux via the AMPK/mTOR signaling pathway.

Result Analysis
Print
Save
E-mail