1.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
2.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
3.Pathogenesis and treatment of "inflammation cancer transformation" of ulcerative colitis based on "Kenang" theory.
Jia-Kang XIE ; Xiao-Ning XU ; Feng-Ting AI ; Shao-Xi LI ; Yun AN ; Xuan GONG ; Yong CAO
China Journal of Chinese Materia Medica 2025;50(8):2298-2304
Ulcerative colitis(UC) is a recurrent, chronic, nonspecific inflammatory bowel disease. The longer the course of the disease, the higher the risk of cancerization. In recent years, the incidence and mortality rates of colon cancer in China have been increasing year by year, seriously threatening the life and health of patients. Therefore, studying the mechanism of "inflammation cancer transformation" in UC and conducting early intervention is crucial. The "Kenang" theory is an important component of traditional Chinese medicine(TCM) theory of phlegm and blood stasis. It is based on the coexistence of phlegm and blood stasis in the body and deeply explores the pathogenic syndromes and characteristics of phlegm and blood stasis. Kenang is a pathological product formed when long-term Qi stagnation leads to the internal formation of phlegm and blood stasis, which is hidden deep within the body. It is characterized by being hidden, progressive, and difficult to treat. The etiology and pathogenesis of "inflammation cancer transformation" in UC are consistent with the connotation of the "Kenang" theory. The internal condition for the development of UC "inflammation cancer transformation" is the deficiency of healthy Qi, with Qi stagnation being the key pathological mechanism. Phlegm and blood stasis are the main pathogenic factors. Phlegm and blood stasis accumulate in the body over time and can produce cancer toxins. Due to the depletion of healthy Qi and a weakened constitution, the body is unable to limit the proliferation and invasion of cancer toxins, eventually leading to cancer transformation in UC. In clinical treatment, the focus should be on removing phlegm and blood stasis, with syndrome differentiation and treatment based on three basic principles: supporting healthy Qi to strengthen the body's foundation, resolving phlegm and blood stasis to break up the Kenang, and regulating Qi and blood to smooth the flow of energy and resolve stagnation. This approach helps to dismantle the Kenang, delay, block, or even reverse the cancerization process of UC, reduce the risk of "inflammation cancer transformation", improve the patient's quality of life, and provide new perspectives and strategies for early intervention in the development of colon cancer.
Humans
;
Colitis, Ulcerative/immunology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Cell Transformation, Neoplastic
4.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
5.Advance on clinical and pharmacological research of Bawei Chenxiang Powder and related formulae.
Lu-Lu KANG ; Jia-Tong WANG ; Feng ZHOU ; Guo-Dong YANG ; Xiao-Juan LI ; Xiao-Li GAO ; Luobu GESANG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(10):2875-2882
Bawei Chenxiang Powder(BCP), first documented in the Tibetan medical work Four Medical Classics, has been widely applied in clinical practices in Tibetan and Mongolian medicines since its development. It has the effect of clearing the heart heat, calming the mind, and inducing resuscitation. On the basis of BCP, multiple types of formulae have been developed, such as Bawei Yiheyi Chenxiang Powder, Bawei Rang Chenxiang Powder, and Bawei Pingchuan Chenxiang Powder, which are widely used for treating cardiovascular and respiratory diseases. Current pharmacological research has revealed the pharmacological effects of BCP and its related formulae against myocardial ischemia, cerebral ischemia, renal ischemia, and anti-hypoxia. BCP and its related formulae introduced more treatment options for related clinical diseases and provided insights for fully comprehending the essence and pharmacological components of the formulae. This paper systematically reviewed the clinical and pharmacological research on BCP and its related formulae, analyzing the formulation principles and potential key flavors and active ingredients. This lays a fundamental scientific basis for the clinical use, quality evaluation, and subsequent development and application of BCP and its related formulae, providing references for studying traditional Chinese medicine formulae in a thorough and systematic manner.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Powders/chemistry*
;
Animals
;
Medicine, Chinese Traditional
6.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
7.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*
8.Observation on the therapeutic effect of a modified Devine procedure with subcutaneous sliding fixation method for concealed penis.
Mohammed Abdulkarem AL-QAISI ; Hai-Fu TIAN ; Jia-Jin FENG ; Ke-Ming CHEN ; Jin ZHANG ; Yun-Shang TUO ; Xue-Hao WANG ; Bin-Cheng HUANG ; Muhammad Arslan Ul HASSAN ; Rui HE ; Guang-Yong LI
Asian Journal of Andrology 2025;27(4):470-474
To evaluate the therapeutic effect of a modified Devine procedure with a subcutaneous sliding fixation method for the treatment of congenital concealed penis, we retrospectively selected 45 patients with congenital concealed penises who were admitted to General Hospital of Ningxia Medical University (Yinchuan, China) between September 2020 and November 2023. In all cases, the penis was observed to be short, and retracting the skin at the base revealed a normal penile body, which immediately returned to its original position upon release. All patients underwent the modified Devine procedure with subcutaneous sliding fixation and completed a 12-week postoperative follow-up. A statistically significant increase in penile length was observed postoperatively, with the median length increasing from 4.0 (interquartile range [IQR]: 3.5-4.8; 95% confidence interval [CI]: 3.9-4.4) cm to 8.0 (IQR: 7.8-8.0; 95% CI: 7.7-7.9) cm, with P < 0.001. The parents were satisfied with the outcomes, including increased penile length, improved hygiene, and enhanced esthetics. Except for mild foreskin edema in all cases, no complications (such as infections, skin necrosis, or penile retraction) were observed. The edema was resolved within 4 weeks after the operation. This study demonstrates that the modified Devine procedure utilizing the subcutaneous sliding fixation method yields excellent outcomes with minimal postoperative complications, reduced penile retraction, and high satisfaction rates among patients and their families.
Humans
;
Male
;
Penis/abnormalities*
;
Retrospective Studies
;
Urologic Surgical Procedures, Male/methods*
;
Treatment Outcome
;
Child
;
Plastic Surgery Procedures/methods*
9.Relationship between common myositis-specific antibodies and clinical features in children with juvenile dermatomyositis.
Su-Yun CHENG ; Jia-Min LU ; Feng LI
Chinese Journal of Contemporary Pediatrics 2025;27(9):1076-1081
OBJECTIVES:
To investigate the distribution of myositis-specific antibodies (MSA) in juvenile dermatomyositis (JDM) and the relationship between MSA and clinical features of JDM.
METHODS:
Clinical data of 72 children with JDM hospitalized from January 2020 to April 2025 were reviewed retrospectively, all of whom had been tested for MSA. The relationship between common MSA subtypes and clinical features was analyzed.
RESULTS:
Among the 72 children, 45 (62%) were positive for MSA, including 27 anti-NXP2-positive cases (38%), 10 anti-MDA5-positive cases (14%), and 3 anti-cN1A-positive cases (4%). Compared with the MSA-negative group, the anti-MDA5-positive patients showed significantly higher incidence rates of fever, arthritis, and interstitial lung disease (P<0.05). The anti-NXP2-positive patients exhibited significantly higher incidence rates of calcinosis, fever, soft tissue edema, and interstitial lung disease than the MSA-negative patients (P<0.05). Compared with the anti-MDA5-positive group and MSA-negative group, the anti-NXP2-positive group had significantly higher levels of creatine kinase and creatine kinase isoenzyme (P<0.017) and a significantly lower score of the Childhood Myositis Assessment Scale (P<0.017).
CONCLUSIONS
The positive rate of MSA is high in children with JDM, with different subtypes correlating with specific clinical manifestations and organ involvement. Detection of MSA is crucial for diagnosis and clinical management of JDM.
Humans
;
Dermatomyositis/immunology*
;
Male
;
Female
;
Child
;
Retrospective Studies
;
Interferon-Induced Helicase, IFIH1/immunology*
;
Child, Preschool
;
Autoantibodies/blood*
;
Adolescent
10.Effectiveness of Xuanshen Yishen Decoction on Intensive Blood Pressure Control: Emulation of a Randomized Target Trial Using Real-World Data.
Xiao-Jie WANG ; Yuan-Long HU ; Jia-Ming HUAN ; Shi-Bing LIANG ; Lai-Yun XIN ; Feng JIANG ; Zhen HUA ; Zhen-Yuan WANG ; Ling-Hui KONG ; Qi-Biao WU ; Yun-Lun LI
Chinese journal of integrative medicine 2025;31(8):677-684
OBJECTIVE:
To investigate the effectiveness of Xuanshen Yishen Decoction (XYD) in the treatment of hypertension.
METHODS:
Hospital electronic medical records from 2019-2023 were utilized to emulate a randomized pragmatic clinical trial. Hypertensive participants were eligible if they were aged ⩾40 years with baseline systolic blood pressure (BP) ⩾140 mm Hg. Patients treated with XYD plus antihypertensive regimen were assigned to the treatment group, whereas those who followed only antihypertensive regimen were assigned to the control group. The primary outcome assessed was the attainment rate of intensive BP control at discharge, with the secondary outcome focusing on the 6-month all-cause readmission rate.
RESULTS:
The study included 3,302 patients, comprising 2,943 individuals in the control group and 359 in the treatment group. Compared with the control group, a higher proportion in the treatment group achieved the target BP for intensive BP control [8.09% vs. 17.5%; odds ratio (OR)=2.29, 95% confidence interval (CI)=1.68 to 3.13; P<0.001], particularly in individuals with high homocysteine levels (OR=3.13; 95% CI=1.72 to 5.71; P<0.001; P for interaction=0.041). Furthermore, the 6-month all-cause readmission rate in the treatment group was lower than in the control group (hazard ratio=0.58; 95% CI=0.36 to 0.91; P=0.019), and the robustness of the results was confirmed by sensitivity analyse.
CONCLUSIONS
XYD could be a complementary therapy for intensive BP control. Our study offers real-world evidence and guides the choice of complementary and alternative therapies. (Registration No. ChiCTR2400086589).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Antihypertensive Agents/pharmacology*
;
Blood Pressure/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Hypertension/physiopathology*
;
Patient Readmission
;
Treatment Outcome

Result Analysis
Print
Save
E-mail