1.Textual Research on Key Information of Famous Classical Formula Jiegengtang
Yang LEI ; Yuli LI ; Xiaoming XIE ; Zhen LIU ; Shanghua ZHANG ; Tieru CAI ; Ying TAN ; Weiqiang ZHOU ; Zhaoxu YI ; Yun TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):182-190
Jiegengtang is a basic formula for treating sore throat and cough. By means of bibliometrics, this study conducted a textual research and analysis on the key information such as formula origin, decocting methods, and clinical application of Jiegengtang. After the research, it can be seen that Jiegengtang is firstly contained in Treatise on Febrile and Miscellaneous Disease, which is also known as Ganjietang, and it has been inherited and innovated by medical practitioners of various dynasties in later times. The origins of Chinese medicines in this formula is basically clear, Jiegeng is the dried roots of Platycodon grandiflorum, Gancao is the dried roots and rhizomes of Glycyrrhiza uralensis, the two medicines are selected raw products. The dosage is 27.60 g of Glycyrrhizae Radix et Rhizoma and 13.80 g of Platycodonis Radix, decocted with 600 mL of water to 200 mL, taken warmly after meals, twice a day, 100 mL for each time. In ancient times, Jiegengtang was mainly used for treating Shaoyin-heat invasion syndrome, with cough and sore throat as its core symptoms. In modern clinical practice, Jiegengtang is mainly used for respiratory diseases such as pharyngitis, esophagitis, tonsillitis and lung abscess, especially for pharyngitis and lung abscess with remarkable efficacy. This paper can provide literature reference basis for the modern clinical application and new drug development of Jiegengtang.
2.Textual Research on Key Information of Famous Classical Formula Jiegengtang
Yang LEI ; Yuli LI ; Xiaoming XIE ; Zhen LIU ; Shanghua ZHANG ; Tieru CAI ; Ying TAN ; Weiqiang ZHOU ; Zhaoxu YI ; Yun TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):182-190
Jiegengtang is a basic formula for treating sore throat and cough. By means of bibliometrics, this study conducted a textual research and analysis on the key information such as formula origin, decocting methods, and clinical application of Jiegengtang. After the research, it can be seen that Jiegengtang is firstly contained in Treatise on Febrile and Miscellaneous Disease, which is also known as Ganjietang, and it has been inherited and innovated by medical practitioners of various dynasties in later times. The origins of Chinese medicines in this formula is basically clear, Jiegeng is the dried roots of Platycodon grandiflorum, Gancao is the dried roots and rhizomes of Glycyrrhiza uralensis, the two medicines are selected raw products. The dosage is 27.60 g of Glycyrrhizae Radix et Rhizoma and 13.80 g of Platycodonis Radix, decocted with 600 mL of water to 200 mL, taken warmly after meals, twice a day, 100 mL for each time. In ancient times, Jiegengtang was mainly used for treating Shaoyin-heat invasion syndrome, with cough and sore throat as its core symptoms. In modern clinical practice, Jiegengtang is mainly used for respiratory diseases such as pharyngitis, esophagitis, tonsillitis and lung abscess, especially for pharyngitis and lung abscess with remarkable efficacy. This paper can provide literature reference basis for the modern clinical application and new drug development of Jiegengtang.
3.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
4.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
5.Phase II randomized study of dostarlimab alone or with bevacizumab versus non-platinum chemotherapy in recurrent gynecological clear cell carcinoma (DOVE/APGOT-OV7/ENGOT-ov80)
Jung-Yun LEE ; David TAN ; Isabelle RAY-COQUARD ; Jung Bok LEE ; Byoung Gie KIM ; Els Van NIEUWENHUYSEN ; Ruby Yun-Ju HUANG ; Ka Yu TSE ; Antonio GONZÁLEZ-MARTIN ; Clare SCOTT ; Kosei HASEGAWA ; Katie WILKINSON ; Eun Yeong YANG ; Stephanie LHEUREUX ; Rebecca KRISTELEIT
Journal of Gynecologic Oncology 2025;36(1):e51-
Background:
Recurrent gynecological clear cell carcinoma (rGCCC) has a low objective response rate (ORR) to chemotherapy. Previous preclinical and clinical data suggest a potential synergy between immune checkpoint inhibitors and bevacizumab in rGCCC.Dostarlimab, a humanized monoclonal antibody targeting programmed cell death protein 1 (PD-1), combined with the anti-angiogenic bevacizumab, presents a novel therapeutic approach. This study will investigate the efficacy of dostarlimab +/− bevacizumab in rGCCC.
Methods
DOVE is a global, multicenter, international, open-label, randomized phase 2 study of dostarlimab +/− bevacizumab with standard chemotherapy in rGCCC. We will enroll 198 patients with rGCCC and assign them to one of three groups in a 1:1:1 ratio: arm A (dostarlimab monotherapy), B (dostarlimab + bevacizumab), and C (investigator’s choice of chemotherapy [weekly paclitaxel, pegylated liposomal doxorubicin, doxorubicin, or gemcitabine]). Patients with disease progression in arm A or C will be allowed to cross over to arm B. Stratification factors include prior bevacizumab use, prior lines of therapy (1 vs. >1), and primary site (ovarian vs. non-ovarian). Key inclusion criteria are histologically proven recurrent or persistent clear cell carcinoma of the ovary, endometrium, cervix, vagina, or vulva; up to five prior lines of therapy; disease progression within 12 months after platinumbased chemotherapy; and measurable disease. Key exclusion criteria are prior treatment with an anti–PD-1, anti–programmed death-ligand 1, or anti–programmed death-ligand 2 agent.The primary endpoint is progression-free survival determined by investigators. Secondary endpoints are ORR, disease control rate, clinical benefit rate, progression-free survival 2, overall survival, and toxicity. Exploratory objectives include immune biomarkers.
6.Digital health's impact on the patient-doctor relationship in a primary healthcare setting: A qualitative study.
Kai Ping SZE ; Yean Lyi LIM ; Qi Wei FONG ; Jacqueline Giovanna DE ROZA ; Poay Sian Sabrina LEE ; Eng Sing LEE ; Shu Yun TAN
Annals of the Academy of Medicine, Singapore 2025;54(2):129-131
7.Virtual reality-based cognitive training for MCI in the elderly: A feasibility randomised pilot study.
Zaylea KUA ; Rebecca Hui Shan ONG ; Nicole Yun Ching CHEN ; Peng Soon YOON ; Samuel Teong Huang CHEW ; YanHong DONG ; Louisa Mei Ying TAN
Annals of the Academy of Medicine, Singapore 2025;54(7):445-447
9.Singapore Myeloma Study Group consensus guidelines for the management of patients with newly diagnosed multiple myeloma.
Sanjay DE MEL ; Allison Cy TSO ; Cinnie Y SOEKOJO ; Melissa G OOI ; Chi Ching LIM ; Constance TEO ; Yun Xin CHEN ; Melinda TAN ; Aditi MANJERI ; Zhao Yuan LEE ; Daryl TAN ; Liang King LEE ; Ling CAO ; Yeow Tee GOH ; Chandramouli NAGARAJAN ; Wee Joo CHNG
Annals of the Academy of Medicine, Singapore 2025;54(9):561-584
10.Phase II randomized study of dostarlimab alone or with bevacizumab versus non-platinum chemotherapy in recurrent gynecological clear cell carcinoma (DOVE/APGOT-OV7/ENGOT-ov80)
Jung-Yun LEE ; David TAN ; Isabelle RAY-COQUARD ; Jung Bok LEE ; Byoung Gie KIM ; Els Van NIEUWENHUYSEN ; Ruby Yun-Ju HUANG ; Ka Yu TSE ; Antonio GONZÁLEZ-MARTIN ; Clare SCOTT ; Kosei HASEGAWA ; Katie WILKINSON ; Eun Yeong YANG ; Stephanie LHEUREUX ; Rebecca KRISTELEIT
Journal of Gynecologic Oncology 2025;36(1):e51-
Background:
Recurrent gynecological clear cell carcinoma (rGCCC) has a low objective response rate (ORR) to chemotherapy. Previous preclinical and clinical data suggest a potential synergy between immune checkpoint inhibitors and bevacizumab in rGCCC.Dostarlimab, a humanized monoclonal antibody targeting programmed cell death protein 1 (PD-1), combined with the anti-angiogenic bevacizumab, presents a novel therapeutic approach. This study will investigate the efficacy of dostarlimab +/− bevacizumab in rGCCC.
Methods
DOVE is a global, multicenter, international, open-label, randomized phase 2 study of dostarlimab +/− bevacizumab with standard chemotherapy in rGCCC. We will enroll 198 patients with rGCCC and assign them to one of three groups in a 1:1:1 ratio: arm A (dostarlimab monotherapy), B (dostarlimab + bevacizumab), and C (investigator’s choice of chemotherapy [weekly paclitaxel, pegylated liposomal doxorubicin, doxorubicin, or gemcitabine]). Patients with disease progression in arm A or C will be allowed to cross over to arm B. Stratification factors include prior bevacizumab use, prior lines of therapy (1 vs. >1), and primary site (ovarian vs. non-ovarian). Key inclusion criteria are histologically proven recurrent or persistent clear cell carcinoma of the ovary, endometrium, cervix, vagina, or vulva; up to five prior lines of therapy; disease progression within 12 months after platinumbased chemotherapy; and measurable disease. Key exclusion criteria are prior treatment with an anti–PD-1, anti–programmed death-ligand 1, or anti–programmed death-ligand 2 agent.The primary endpoint is progression-free survival determined by investigators. Secondary endpoints are ORR, disease control rate, clinical benefit rate, progression-free survival 2, overall survival, and toxicity. Exploratory objectives include immune biomarkers.

Result Analysis
Print
Save
E-mail