1.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
2.Exploration of Mechanism of Huanglian Zhimutang in Treatment of Type 2 Diabetes Mellitus Based on PI3K/Akt Pathway
Lei WANG ; Yun PAN ; Lihua WAN ; Wenling TU ; Lingyong CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):168-177
ObjectiveBased on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, the effects of Huanglian Zhimutang on glucose and lipid metabolism disorders and hepatic insulin resistance (IR) with type 2 diabetes mellitus (T2DM) were investigated. MethodsGoto-Kakizaki (GK) rats were fed a high-fat diet to induce a T2DM rat model and then randomly divided into four groups: normal control group, model control group, metformin group (0.10 g·kg-1), and Huanglian Zhimutang group (3.60 g·kg-1), with eight rats in each group. Drug intervention was administered continuously for 8 weeks. Serum and liver tissues were collected from each group. Fasting insulin (FINS) levels were measured using enzyme-linked immunosorbent assay (ELISA), and the homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated. Total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were measured using an automatic biochemical analyzer. Liver tissue pathology was observed via hematoxylin-eosin (HE) staining. Serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were detected using ELISA. Network pharmacology and transcriptomics sequencing were combined to analyze differentially expressed genes (DEGs) in liver tissue from the normal control group, model control group, and Huanglian Zhimutang group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to identify pathways affected by Huanglian Zhimutang intervention in T2DM. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to assess the mRNA expression of insulin receptor substrate-1 (IRS-1), PI3K, Akt, and peroxisome proliferator-activated receptor gamma (PPARγ) in liver tissue, while Western blot was used to evaluate corresponding protein expression levels. ResultsAfter 8 weeks of Huanglian Zhimutang intervention, typical symptoms of T2DM rats such as polydipsia, polyphagia, and polyuria were significantly alleviated, along with reductions in fasting blood glucose levels and insulin resistance(P<0.01). Histopathological results revealed that Huanglian Zhimutang effectively improved hepatic steatosis and inflammatory edema and reduced lipid vacuole formation. Biochemical tests demonstrated that Huanglian Zhimutang significantly reduced serum levels of TC, TG, and LDL-C(P<0.01). ELISA results showed that Huanglian Zhimutang effectively decreased serum concentrations of IL-6 and TNF-α(P<0.05,P<0.01). Combined network pharmacology predictions with KEGG pathway analysis of transcriptomics showed that DEGs between the Huanglian Zhimutang and model control groups were significantly enriched in the PI3K/Akt signaling pathway. Real-time PCR and Western blot results confirmed that Huanglian Zhimutang upregulated the expression of PI3K/Akt signaling pathway-related mRNAs and proteins in liver tissue(P<0.05,P<0.01), thereby reducing inflammation, alleviating hepatic lipid accumulation, and enhancing insulin sensitivity. ConclusionHuanglian Zhimutang effectively ameliorates glucose and lipid metabolism disorders in T2DM rats. Its mechanism may be related to the regulation of the PI3K/Akt pathway, which reduces inflammation and hepatic lipid deposition and relieves hepatic insulin resistance.
3.Exploration of Mechanism of Huanglian Zhimutang in Treatment of Type 2 Diabetes Mellitus Based on PI3K/Akt Pathway
Lei WANG ; Yun PAN ; Lihua WAN ; Wenling TU ; Lingyong CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):168-177
ObjectiveBased on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, the effects of Huanglian Zhimutang on glucose and lipid metabolism disorders and hepatic insulin resistance (IR) with type 2 diabetes mellitus (T2DM) were investigated. MethodsGoto-Kakizaki (GK) rats were fed a high-fat diet to induce a T2DM rat model and then randomly divided into four groups: normal control group, model control group, metformin group (0.10 g·kg-1), and Huanglian Zhimutang group (3.60 g·kg-1), with eight rats in each group. Drug intervention was administered continuously for 8 weeks. Serum and liver tissues were collected from each group. Fasting insulin (FINS) levels were measured using enzyme-linked immunosorbent assay (ELISA), and the homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated. Total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were measured using an automatic biochemical analyzer. Liver tissue pathology was observed via hematoxylin-eosin (HE) staining. Serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels were detected using ELISA. Network pharmacology and transcriptomics sequencing were combined to analyze differentially expressed genes (DEGs) in liver tissue from the normal control group, model control group, and Huanglian Zhimutang group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to identify pathways affected by Huanglian Zhimutang intervention in T2DM. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to assess the mRNA expression of insulin receptor substrate-1 (IRS-1), PI3K, Akt, and peroxisome proliferator-activated receptor gamma (PPARγ) in liver tissue, while Western blot was used to evaluate corresponding protein expression levels. ResultsAfter 8 weeks of Huanglian Zhimutang intervention, typical symptoms of T2DM rats such as polydipsia, polyphagia, and polyuria were significantly alleviated, along with reductions in fasting blood glucose levels and insulin resistance(P<0.01). Histopathological results revealed that Huanglian Zhimutang effectively improved hepatic steatosis and inflammatory edema and reduced lipid vacuole formation. Biochemical tests demonstrated that Huanglian Zhimutang significantly reduced serum levels of TC, TG, and LDL-C(P<0.01). ELISA results showed that Huanglian Zhimutang effectively decreased serum concentrations of IL-6 and TNF-α(P<0.05,P<0.01). Combined network pharmacology predictions with KEGG pathway analysis of transcriptomics showed that DEGs between the Huanglian Zhimutang and model control groups were significantly enriched in the PI3K/Akt signaling pathway. Real-time PCR and Western blot results confirmed that Huanglian Zhimutang upregulated the expression of PI3K/Akt signaling pathway-related mRNAs and proteins in liver tissue(P<0.05,P<0.01), thereby reducing inflammation, alleviating hepatic lipid accumulation, and enhancing insulin sensitivity. ConclusionHuanglian Zhimutang effectively ameliorates glucose and lipid metabolism disorders in T2DM rats. Its mechanism may be related to the regulation of the PI3K/Akt pathway, which reduces inflammation and hepatic lipid deposition and relieves hepatic insulin resistance.
4.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
5.Improvement effect and mechanism of ursolic acid on allergic contact dermatitis model rats
Yang YANG ; Ying ZHANG ; Tian LIU ; Leilei PENG ; Yun PAN
China Pharmacy 2025;36(20):2537-2541
OBJECTIVE To investigate the ameliorative effect of ursolic acid on skin inflammation in rats with allergic contact dermatitis (ACD), and explore its mechanism of action based on the Notch1/hairy and enhancer of split 1 (Hes1) signaling pathway. METHODS The ACD model was established by skin application of 2, 4-dinitrochlorobenzene. Forty successfully modeled rats were randomly divided into model control group (MC group), ursolic acid low-dose group (UA-L group, 50 mg/kg), ursolic acid high-dose group (UA-H group, 100 mg/kg), and ursolic acid high-dose+Notch1 activator group (UA-H+Jagged1 group, 100 mg/kg ursolic acid+50 ng/kg Jagged1), with 10 rats in each group. Another 10 rats with only hair shedding were selected as the normal control group. Rats in the administration groups were given the corresponding dose of ursolic acid intragastrically or/and Jagged1 by intraperitoneal injection once a day for 14 consecutive days. Twenty-four hours after the last treatment, the skin inflammation status and dermatitis scores of rats in each group were detected. The levels of interleukin-6 (IL-6), IL-17 and IL-10 in serum and skin tissue were detected by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was used to detect the pathological morphology of the skin tissue. Immunohistochemical staining and immunoblotting assay were used to detect the protein expressions of Notch1 and Hes1 in skin tissues. RESULTS Compared with the MC group, both the UA-L group and UA-H group exhibited significantly lower dermatitis scores, along with varying degrees of reduction in histopathological skin damage such as inflammatory cell infiltration. Additionally, the levels of IL-6 and IL-17 in serum and skin tissues were markedly decreased, while the levels of IL-10 were significantly increased in both groups; protein expressions of Notch1 and Hes1 were decreased significantly (P<0.05), and the improvements in the aforementioned indicators were more significant in the UA-H group (P<0.05). Jagged1 could significantly weaken the improvement effects of UA-H on the above indicators (P<0.05). CONCLUSIONS Ursolic acid may attenuate the expression of pro-inflammatory cytokines and enhance the expression of anti-inflammatory factors by blocking Notch1/Hes1 signaling pathway, thereby improving dermatitis symptoms in ACD rats.
6.Comparison of predictive accuracy and clinical applicability among four vancomycin individualized dosing tools
Shu CHEN ; Yanqin LU ; Yun SHEN ; Chang CAO ; Kunming PAN ; Xiaoyu LI ; Qianzhou LYU
China Pharmacy 2025;36(22):2822-2827
OBJECTIVE To compare the predictive accuracy and clinical applicability of four vancomycin individualized dosing tools (SmartDose, ClinCalc, Gulou, Pharmado) and provide a basis for rational clinical medication use. METHODS A retrospective cohort study was conducted, enrolling 479 adult patients who received vancomycin therapy and underwent steady-state trough concentration monitoring in Zhongshan Hospital, Fudan University (Xiamen Branch) from January 1, 2022, to June 30, 2024. The predictive accuracy of each tool was evaluated using indicators, such as mean error (ME), mean absolute error (MAE), mean percentage error (MPE), mean absolute percentage error (MAPE), the proportion of patients with an absolute percentage error (APE) of less than 30%, the 95% limits of agreement, and the overall relative percentage difference between predicted and measured values. Using indicators such as accessibility, patient management, and recommendation of multiple treatment options, the clinical panxso@163.com applicability of the tools for all patients was evaluated; using the discrepancy in accuracy between the predicted and actual measured blood drug concentrations as an indicator, the clinical applicability was assessed for patients in different renal function subgroups (hyperfunction, normal, mild impairment, moderate impairment, and severe impairment). RESULTS In terms of accuracy, SmartDose demonstrated the best overall performance with an MAPE of 46.40% and a proportion of APE <30% (46.56%). Bland-Altman analysis indicated that SmartDose had the smallest overall relative percentage difference (-7.25%), although the 95% limits of agreement were broad for all tools, with differences between the upper and lower limits exceeding 200%. In terms of applicability, all four dosing tools were freely accessible and demonstrated good availability; SmartDose and Pharmado provided the most comprehensive solutions, offering features such as patient management, multiple regimen recommendations, and drug concentration-time curve plotting. Stratified analysis based on renal function revealed that Pharmado showed optimal prediction for hyperfiltration patients (mean difference: 0.11 mg/L). SmartDose and ClinCalc showed relatively better performance in normal and mild renal impaiment (mean difference: 0.37, 0.51 mg/L and -1.13, -1.33 mg/L,respectively). SmartDose performed best in moderate renal impairment (mean difference: -2.60 mg/L). Pharmado and Gulou had smaller prediction biases in severe renal impairment (mean differences: 1.52 mg/L and -0.23 mg/L, respectively). CONCLUSIONS The four individualized dosing tools demonstrated limited accuracy in the initial prediction of vancomycin concentrations. Among them, SmartDose demonstrates the highest overall prediction accuracy and possesses comprehensive clinical management features. It is recommended that Pharmado be preferred for patients with renal hyperfiltration; SmartDose or ClinCalc can be used for patients with normal or mildly impaired renal function; SmartDose is recommended for patients with moderately impaired renal function; Pharmado or Gulou may be considered for patients with severely impaired renal function.
7.Dahuang Zhechong Pills delay heart aging by reducing cardiomyocyte apoptosis via PI3K/AKT/HIF-1α signaling pathway.
Wen-Jie LIU ; Yue TU ; Wei-Ming HE ; Si-Yi LIU ; Liu-Yun-Xin PAN ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN
China Journal of Chinese Materia Medica 2025;50(5):1276-1285
This study aimed to investigate the effect of Dahuang Zhechong Pills(DHZCP) in delaying heart aging(HA) and explore the potential mechanism. Network pharmacology and molecular docking were employed to explore the targets and potential mechanisms of DHZCP in delaying HA. Furthermore, in vitro experiments were conducted with the DHZCP-containing serum to verify key targets and pathways in D-galactose(D-gal)-induced aging of cardiomyocytes. Active components of DHZCP were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCSMP), and relevant targets were predicted. HA-related targets were screened from the GeneCards, Online Mendelian Inheritance in Man(OMIM), and DisGeNET. The common targets shared by the active components of DHZCP and HA were used to construct a protein-protein interaction network in STRING 12.0, and core targets were screened based on degree in Cytoscape 3.9.1. Metaspace was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of the core targets to predict the mechanisms. Molecular docking was performed in AutoDock Vina. The results indicated that a total of 774 targets of the active components of DHZCP and 4 520 targets related to HA were screened out, including 510 common targets. Core targets included B-cell lymphoma 2(BCL-2), serine/threonine kinase 1(AKT1), and hypoxia-inducible factor 1 subunit A(HIF1A). The GO and KEGG enrichment analyses suggested that DHZCP mainly exerted its effects via the phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway, HIF-1α signaling pathway, longevity signaling pathway, and apoptosis signaling pathway. Among the pathways predicted by GO and KEGG enrichment analyses, the PI3K/AKT/HIF-1α signaling pathway was selected for verification. The cell-counting kit 8(CCK-8) assay showed that D-gal significantly inhibited the proliferation of H9c2 cells, while DHZCP-containing serum increased the viability of H9c2 cells. SA-β-gal staining revealed a significant increase in the number of blue-green positive cells in the D-gal group, which was reduced by DHZCP-containing serum. TUNEL staining showed that DHZCP-containing serum decreased the number of apoptotic cells. After treatment with DHZCP-containing serum, the protein levels of Klotho, BCL-2, p-PI3K/PI3K, p-AKT1/AKT1, and HIF-1α were up-regulated, while those of P21, P16, BCL-2 associated X protein(Bax), and cleaved caspase-3 were down-regulated. The results indicated that DHZCP delayed HA via multiple components, targets, and pathways. Specifically, DHZCP may delay HA by reducing apoptosis via activating the PI3K/AKT/HIF-1α signaling pathway.
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Apoptosis/drug effects*
;
Myocytes, Cardiac/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Animals
;
Rats
;
Humans
;
Molecular Docking Simulation
;
Aging/metabolism*
;
Protein Interaction Maps/drug effects*
;
Heart/drug effects*
;
Network Pharmacology
8.Oxocrebanine inhibits proliferation of hepatoma HepG2 cells by inducing apoptosis and autophagy.
Zheng-Wen WANG ; Cai-Yan PAN ; Chang-Long WEI ; Hui LIAO ; Xiao-Po ZHANG ; Cai-Yun ZHANG ; Lei YU
China Journal of Chinese Materia Medica 2025;50(6):1618-1625
The study investigated the specific mechanism by which oxocrebanine, the anti-hepatic cancer active ingredient in Stephania hainanensis, inhibits the proliferation of hepatic cancer cells. Firstly, methyl thiazolyl tetrazolium(MTT) assay, 5-bromodeoxyuridine(BrdU) labeling, and colony formation assay were employed to investigate whether oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells. Propidium iodide(PI) staining was used to observe the oxocrebanine-induced apoptosis of HepG2 and Hep3B2.1-7 cells. Western blot was employed to verify whether apoptotic effector proteins, such as cleaved cysteinyl aspartate-specific protease 3(c-caspase-3), poly(ADP-ribose) polymerase 1(PARP1), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), Bcl-2 homologous killer(Bak), and myeloid cell leukemia-1(Mcl-1) were involved in apoptosis. Secondly, HepG2 cells were simultaneously treated with oxocrebanine and the autophagy inhibitor 3-methyladenine(3-MA), and the changes in the autophagy marker LC3 and autophagy-related proteins [eukaryotic translation initiation factor 4E-binding protein 1(4EBP1), phosphorylated 4EBP1(p-4EBP1), 70-kDa ribosomal protein S6 kinase(P70S6K), and phosphorylated P70S6K(p-P70S6K)] were determined. The results of MTT assay, BrdU labeling, and colony formation assay showed that oxocrebanine inhibited the proliferation of HepG2 and Hep3B2.1-7 cells in a dose-dependent manner. The results of flow cytometry suggested that the apoptosis rate of HepG2 and Hep3B2.1-7 cells increased after treatment with oxocrebanine. Western blot results showed that the protein levels of c-caspase-3, Bax, and Bak were up-regulated and those of PARP1, Bcl-2, and Mcl-1 were down-regulated in the HepG2 cells treated with oxocrebanine. The results indicated that oxocrebanine induced apoptosis, thereby inhibiting the proliferation of hepatic cancer cells. The inhibition of HepG2 cell proliferation by oxocrebanine may be related to the induction of protective autophagy in hepatocellular carcinoma cells. Oxocrebanine still promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, reduced the phosphorylation levels of 4EBP1 and P70S6K, which can be reversed by the autophagy inhibitor 3-MA. It is prompted that oxocrebanine can inhibit the proliferation of hepatic cancer cells by inducing autophagy. In conclusion, oxocrebanine inhibits the proliferation of hepatic cancer cells by inducing apoptosis and autophagy.
Humans
;
Apoptosis/drug effects*
;
Autophagy/drug effects*
;
Cell Proliferation/drug effects*
;
Hep G2 Cells
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Caspase 3/genetics*
9.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
10.Two cases of creatine deficiency syndrome caused by GAMT gene mutations and literature review.
Ting-Ting ZHAO ; Zou PAN ; Jian-Min ZHONG ; Hai-Yun TANG ; Fei YIN ; Jing PENG ; Chen CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(3):340-346
OBJECTIVES:
To summarize the clinical manifestations and genetic characteristics of creatine deficiency syndrome (CDS) caused by GAMT gene mutations.
METHODS:
A retrospective analysis was conducted on the clinical and genetic data of two children diagnosed with GAMT deficiency-type CDS at the Children's Medical Center of Xiangya Hospital, Central South University, from December 2020 to December 2024.
RESULTS:
The two patients presented with symptoms in infancy, and both had compound heterozygous mutations in the GAMT gene. Case 1 exhibited seizures and intellectual disability, while Case 2 had intellectual disability and attention-deficit hyperactivity disorder. Magnetic resonance spectroscopy of cranial MRI in both patients indicated reduced creatine peaks. After creatine treatment, seizures in Case 1 were controlled, but both patients continued to experience intellectual disabilities and behavioral issues. As of December 2024, a total of 21 cases have been reported in China (including this study), and 115 cases have been reported abroad. All patients exhibited developmental delay or intellectual disabilities, with 66.9% (91/136) experiencing seizures, 33.8% (46/136) presenting with motor disorders, and 36.8% (50/136) having behavioral problems. Seventy-five percent (102/136) of patients received creatine treatment, leading to significant improvements in seizures and motor disorders, although cognitive improvement was not substantial.
CONCLUSIONS
GAMT deficiency-type CDS is rare and presents with nonspecific clinical features. Timely diagnosis facilitates targeted treatment, which can partially improve prognosis.
Child
;
Female
;
Humans
;
Male
;
Creatine/deficiency*
;
Guanidinoacetate N-Methyltransferase/deficiency*
;
Intellectual Disability/genetics*
;
Mutation
;
Retrospective Studies
;
Rhabdomyolysis/genetics*
;
Language Development Disorders
;
Movement Disorders/congenital*

Result Analysis
Print
Save
E-mail