1.Application of Bedside Hypertonic Saline-contrast Electrical Impedance Tomography of Lung Perfusion in Patients After Pulmonary Endarterectomy: Two Cases and Literature Review
Qiuyan CAI ; Wanglin LIU ; Wei CHENG ; Jingjing LIU ; Chaoji ZHANG ; Jianzhou LIU ; Yun LONG ; Huaiwu HE
Medical Journal of Peking Union Medical College Hospital 2025;16(2):513-518
Pulmonary electrical impedance tomography (EIT), a noninvasive, continuous, dynamic, and radiation-free bedside imaging technique for monitoring pulmonary ventilation, is now widely utilized in the diagnosis and management of critically ill patients. Beyond ventilation monitoring, hypertonic saline contrast-enhanced EIT for bedside pulmonary perfusion assessment has recently garnered significant attention. This article describes the application of hypertonic saline contrast-enhanced EIT to evaluate pulmonary perfusion in two patients following pulmonary endarterectomy, providing a reference for its perioperative application in such patients.
2.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
3.Development of oral preparations of poorly soluble drugs based on polymer supersaturated self-nanoemulsifying drug delivery technology.
Xu-Long CHEN ; Jiang-Wen SHEN ; Wei-Wei ZHA ; Jian-Yun YI ; Lin LI ; Zhang-Ting LAI ; Zheng-Gen LIAO ; Ye ZHU ; Yue-Er CHENG ; Cheng LI
China Journal of Chinese Materia Medica 2025;50(16):4471-4482
Poor water solubility is the primary obstacle preventing the development of many pharmacologically active compounds into oral preparations. Self-nanoemulsifying drug delivery systems(SNEDDS) have become a widely used strategy to enhance the oral bioavailability of poorly soluble drugs by inducing a supersaturated state, thereby improving their apparent solubility and dissolution rate. However, the supersaturated solutions formed in SNEDDS are thermodynamically unstable systems with solubility levels exceeding the crystalline equilibrium solubility, making them prone to drug precipitation in the gastrointestinal tract and ultimately hindering drug absorption. Therefore, maintaining a stable supersaturated state is crucial for the effective delivery of poorly soluble drugs. Incorporating polymers as precipitation inhibitors(PPIs) into the formulation of supersaturated self-nanoemulsifying drug delivery systems(S-SNEDDS) can inhibit drug aggregation and crystallization, thus maintaining a stable supersaturated state. This has emerged as a novel preparation strategy and a key focus in SNEDDS research. This review explores the preparation design of SNEDDS and the technical challenges involved, with a particular focus on polymer-based S-SNEDDS for enhancing the solubility and oral bioavailability of poorly soluble drugs. It further elucidates the mechanisms by which polymers participate in transmembrane transport, summarizes the principles by which polymers sustain a supersaturated state, and discusses strategies for enhancing drug absorption. Altogether, this review provides a structured framework for the development of S-SNEDDS preparations with stable quality and reduced development risk, and offers a theoretical reference for the application of S-SNEDDS technology in improving the oral bioavailability of poorly soluble drugs.
Solubility
;
Administration, Oral
;
Polymers/chemistry*
;
Drug Delivery Systems/methods*
;
Humans
;
Emulsions/chemistry*
;
Biological Availability
;
Animals
;
Pharmaceutical Preparations/administration & dosage*
4.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
5.Research progress on detection methods and traceability of alkaloid toxins in Aconitum species
Tian-yu LIU ; Ge SONG ; Rui-qin YANG ; Yun-feng ZHANG ; Cheng-long ZHANG
Acta Pharmaceutica Sinica 2024;59(4):899-907
As the predominant toxic constituent within the Aconitum genus,
6.Application of Functionalized Liposomes in The Delivery of Natural Products
Cheng-Yun WANG ; Xin-Yue LAN ; Jia-Xuan GU ; Xin-Ru GAO ; Long-Jiao ZHU ; Jun LI ; Bing FANG ; Wen-Tao XU ; Hong-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(11):2947-2959
Plant natural products have a wide range of pharmacological properties, not only can they be used as plant dietary supplements to meet the nutritional needs of the human body in the accelerated pace of life, but also occupy an important position in the research and development of therapeutic drugs for the treatment of tumors, inflammation and other diseases, and have been widely accepted by the public due to their good safety. However, despite the above advantages of plant natural products, limiting factors such as low solubility, poor stability, lack of targeting, high toxicity and side effects, and unacceptable odor have greatly impeded their conversion to clinical applications. Therefore, the development of new avenues for the application of new natural products has become an urgent problem to be solved at present. In recent years, with the continuous development of research, various strategies have been developed to improve the bioavailability of natural products. Among them, nanocarrier delivery system is one of the most attractive strategies at present. In past studies, a large number of nanomaterials (organic, inorganic, etc.) have been developed to encapsulate plant-derived natural products for their efficient delivery to specific organs and cells. Up to now, nanotechnology has not only been limited to pharmaceutical applications, but is also competing in the fields of nanofood processing technology and nanoemulsions. Among the various nanocarriers, liposomes are the largest nanocarriers with the largest market share at present. Liposomes are bilayer nanovesicles synthesized from amphiphilic substances, which have advantages such as high drug loading capacity and stability. Attractively, the flexible surface of liposomes can be modified with various functional elements. Functionalized modification of liposomes with different functional elements such as antibodies, nucleic acids, peptides, and stimuli-responsive moieties can bring out the excellent drug delivery function of liposomes to a greater extent. For example, the modification of functional elements with targeting function such as nucleic acids and antibodies on the surface of liposomes can deliver natural products to the target location and improve the bioavailability of drugs; the modification of stimulus-responsive groups such as photosensitizers, magnetic nanoparticles, pH-responsive groups, and temperature sensitizers on the surface of liposomes can achieve controlled release of drugs, localized targeting, and synergistic thermotherapy. In addition to the above properties, by using functionalized liposomes to encapsulate natural products with irritating properties can also effectively mask the irritating properties of natural products, improve public acceptance, and increase the possibility of application of irritating natural products. There are various strategies for modifying liposomes with functional elements, and the properties of functionalized liposomes constructed by different construction strategies differ. The commonly used construction strategies for functionalized liposomes include covalent modification and non-covalent modification. These two types of construction strategies have their own advantages and disadvantages. Covalent modification has better stability than non-covalent modification, but its operation is cumbersome. With the above background, this review focuses on the three typical problems faced by plant natural products at present, and summarizes the specific applications of functionalized liposomes in them. In addition, this paper summarizes the construction strategies for building different types of functionalized liposomes. Finally, this paper will also review the opportunities and challenges faced by functionalized liposomes to enter clinical therapy, and explore the opportunities to overcome these problems, with a view to better realizing the precise control of plant nanomedicines, and providing ideas and inspirations for researchers in related fields as well as relevant industrial staff.
7.Establish a Graded Method to Avoid HLA Class I Antibodies Cor-responding Antigen and Combining HLAMatchmaker Application in Improving the CCI Value after Platelet Transfusion for Patients with IPTR
Su-Qing GAO ; Yun-Ping XU ; Chang-Ru LUO ; Da-Cheng LI ; Long PEN ; Tong LIU ; Qiong-Cai ZOU
Journal of Experimental Hematology 2024;32(1):242-249
Objective:To establish a graded method to avoid mean fluorescence intensity(MFI)threshold of HLA Class I antibodies corresponding antigen,and the HLAMatchmaker program has been used to select the minimum mismatch value of donor-patient epitopes.Evaluate the application value of combining both methods in selecting HLA compatible platelets(PTL)for patients with immune platelet transfusion failure(IPTR)in improving platelet the corrected count increment(CCI).Methods:A total 7 807 PLT cross-matching compatible were performed by the solid-phase red cell adherence(SPRCA)method for 51 IPTR patients.The Luminex single antigen flow cytometry was used to detect HLA Class I antibodies in patients,and detected the MFI value for different specificity antigens of HLA Class I antibodies,was graded into strong positive group(MFI>4 000,level 1),medium positive group(1 000<MFI 4 000,2),weak positive group(500<MFI≤1 000,3),and one negative control group(MFI≤500).The results of 7 807 SPRCA their negative/positive reaction wells were enrolled and statistically analyzed in different grades and the four groups,the statistical differences between the four groups were compared.Multiple applications for the select HLA Class I compatible donor events were made for patients in two cases,and HLAMatchmaker program was used to calculate the number of HLA Class I epitopes mismatches between the donors and patients.The donor with the minimum number of epitopes mismatches was selected,while avoiding the corresponding antigens of HLA Class I antibodies in levels 1 and 2,the provision of HLA compatible platelets for IPTR.After the transfusions,the CCI value of the platelet transfusion efficacy evaluation index was calculated,and the clinical evaluation of the transfusion effect was obtained through statistical analysis.Results:There were statistically significant differences in the positive results of SPRCA immunoassay among the strong positive group,medium positive group,and weak positive group of 51 IPTR patients with different specific of HLA-I class antibodies and corresponding antigens(all P<0.001).The positive results showed a range from high to low,with strong positive group>medium positive group>weak positive group.There were a statistical difference among between the strongly positive or moderately positive groups and the negative control group(P<0.001).There was no statistical difference between the weakly positive group and the negative control group(P>0.05).The strong positive group was set as the corresponding specific HLA Class I site corresponding antigen grade 1 avoidance threshold,the medium positive group as the grade 2 avoidance thresholds,and the weak positive group as the grade 3 avoidance threshold.In the case of donor platelet shortage,it is not necessary to avoid the weak positive group.Avoiding the strategy of donor antigens and HLAMatchmaker program scores≤7 corresponding to HLA Class I antibodies of levels 1 and 2,with CCI values>4.5 × 109/L within 24 hours,can obtain effective clinical platelet transfusion conclusions.Conclusion:When selecting HLA Class I compatible donors for IPTR patients,the grading avoids HLA Class I antibodies corresponding to donor antigens,and the donor selection strategy with the minimum scores of HLAMatchmaker program is comprehensively selected.The negative result confirmed by platelet cross-matching experiments has certain practical application value for improving platelet count in IPTR patients.
8.Classification and Application of Surface-enhanced Raman Spectroscopy Substrates
Shao-Yun CHEN ; Xing-Ying ZHANG ; Ben LIU ; Zhong-Cai WANG ; Cheng-Long HU ; Jian CHEN
Chinese Journal of Analytical Chemistry 2024;52(7):910-924
Surface-enhanced Raman scattering(SERS)can detect molecules adsorbed on the surface of noble metals in monolayers and sub-monolayers,and provide structural information of molecules with high sensitivity,high accuracy,and fingerprint recognition and non-destructive detection.The SERS technology has been widely used in single-molecule detection,chemical reaction and engineering,biomedicine,nanomaterials and environmental detection,and so on.The spectral sensitivity and signal reproducibility of SERS are closely related to the type of noble metal substrate.In this paper,based on the mechanism of electromagnetic field enhancement(EM)and chemical enhancement(CM)of SERS,the affecting factors of SERS enhancement were analyzed,including the micro-nanostructure of SERS substrate,particle size,particle spacing,etc,the research and application of SERS substrate in recent years were summarized and reviewed,and the development direction of metal substrate,data analysis and application direction of SERS technology in the future were prospected.
9.Simultaneou determination of twenty-eight constituents in Dayuan Drink by UPLC-MS/MS
Yu-Jie HOU ; Xin-Jun ZHANG ; Ming SU ; Xin-Rui LI ; Yue-Cheng LIU ; Yu-Qing WANG ; Dan-Dan SUN ; Hui ZHANG ; Kang-Ning XIAO ; Long-Yun DUAN ; Lei CAO ; Zhen-Yu XUAN ; Shan-Xin LIU
Chinese Traditional Patent Medicine 2024;46(11):3545-3552
AIM To establish a UPLC-MS/MS method for the simultaneous content determination of gallic acid,protocatechuic acid,neomangiferin,catechin,caffeic acid,mangiferin,isomangiferin,albiflorin,paeoniflorin,vitexin,liquiritin,scutellarin,baicalin,liquiritigenin,timosaponin BⅡ,quercetin,wogonoside,benzoylpaeoniflorin,isoliquiritigenin,honokiol,magnolol,norarecaidine,arecaidine,arecoline,epicatechin,baicalein,glycyrrhizinate and wogonin in Dayuan Drink.METHODS The analysis was performed on a 35℃thermostatic Syncronis C18 column(100 mm×2.1 mm,1.7 μm),with the mobile phase comprising of 0.1%formic acid-acetonitrile flowing at 0.3 mL/min in a gradient elution manner,and electron spray inoization source was adopted in positive and negative ion scanning with select reaction monitoring mode.RESULTS Twenty-eight constituents showed good linear relationships within their own ranges(R2≥0.991 0),whose average recoveries were 95.60%-103.53%with the RSDs of 0.60%-5.45%.CONCLUSION This rapid,simple,selective,accurate and reliable method can be used for the quality control of Dayuan Drink.
10.Analysis of clinicopathological characteristics, therapeutic strategy and prognosis of 501 patients with gastric neuroendocrine neoplasms attending a single center.
Ben Long ZHANG ; Yi Xun LU ; Wen Quan LIANG ; Yun He GAO ; Hong Qing XI ; Xin Xin WANG ; Ke Cheng ZHANG ; Lin CHEN
Chinese Journal of Gastrointestinal Surgery 2023;26(5):459-466
Objective: To explore the clinicopathological features, treatment strategy and to analysis of prognosis-related risk factors of gastric neuroendocrine neoplasms(G-NEN). Methods: In this study, a retrospective observational study method was used to collect the clinicopathological data of patients diagnosed with G-NEN by pathological examination in the First Medical Center of PLA General Hospital from January 2000 to December 2021. The basic information of the patients, tumor pathological characteristics, and treatment methods were entered, and the treatment information and survival data after discharge were followed up and recorded. The Kaplan-Meier method was used to construct survival curves, and the log-rank test to analyze the differences in survival between groups. Cox Regression model analysis of risk factors affecting the prognosis of G-NEN patients. Results: Among the 501 cases confirmed as G-NEN, 355 were male and 146 were female, and their median age was 59 years. The cohort comprised 130 patients (25.9%) of neuroendocrine tumor (NET) G1, 54 (10.8%) of NET G2, 225 (42.9%) of neuroendocrine carcinoma (NEC), and 102 cases (20.4%) of mixed neuroendocrine-non-neuroendocrine(MiNEN). Patients NET G1 and NET G2 were mainly treated by endoscopic submucosal dissection (ESD) and endoscopic mucosal resection (EMR). The main treatment for patients with NEC/MiNEN was the same as that for gastric malignancies, namely radical gastrectomy+lymph node dissection supplemented with postoperative chemotherapy. There were significant differences in sex, age, maximum tumor diameter, tumor morphology, tumor numbers, tumor location, depth of invasion, lymph node metastasis, distant metastasis, TNM staging and expression of immunohistological markers Syn and CgA among NET, NEC, and MiNEN patients (all P<0.05). Further for NET subgroup analysis, there were significant differences between NET G1 and NET G2 in the maximum tumor diameter, tumor shape and depth of invasion(all P<0.05). 490 patients (490/501, 97.8%) were followed up with a median of 31.2 months. 163 patients had a death during follow-up (NET G1 2, NET G2 1, NEC 114, MiNEN 46). For NET G1, NET G2, NEC and MiNEN patients,the 1-year overall survival rates were 100%, 100%, 80.1% and 86.2%, respectively; the 3-year survival rates were 98.9%, 100%, 43.5% and 55.1%, respectively. The differences were statistically significant (P<0.001). Univariate analysis showed that gender, age, smoking history, alcohol history, tumor pathological grade, tumor morphology, tumor location, tumor size, lymph node metastasis, distant metastasis, and TNM stage were associated with the prognosis of G-NEN patients (all P<0.05). Multivariate analysis showed that age ≥60 years, pathological grade of NEC and MiNEN, distant metastasis, and TNM stage III-IV were independent factors influencing the survival of G-NEN patients (all P<0.05). 63 cases were stage IV at initial diagnosis. 32 of these were treated with surgery and 31 with palliative chemotherapy. Stage IV subgroup analysis showed that the 1-year survival rates were 68.1% and 46.2% in the surgical treatment and palliative chemotherapy groups, respectively, and the 3-year survival rates were 20.9% and 10.3%, respectively; the differences were statistically significant (P=0.016). Conclusions: G-NEN is a heterogeneous group of tumors. Different pathological grades of G-NEN have different clinicopathological features and prognosis. Factors such as age ≥ 60 years old, pathological grade of NEC/MiNEN, distant metastasis, stage III, IV mostly indicate poor prognosis of patients. Therefore, we should improve the ability of early diagnosis and treatment, and pay more attention to patients with advanced age and NEC/MiNEN. Although this study concluded that surgery improves the prognosis of advanced patients more than palliative chemotherapy, the value of surgical treatment for patients with stage IV G-NEN remains controversial.
Humans
;
Male
;
Female
;
Middle Aged
;
Stomach Neoplasms/pathology*
;
Lymphatic Metastasis
;
Prognosis
;
Neuroendocrine Tumors/pathology*
;
Carcinoma, Neuroendocrine/therapy*
;
Neoplasm Staging
;
Retrospective Studies

Result Analysis
Print
Save
E-mail