1.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
2.Key Information Research and Ancient and Modern Application Analysis of Classic Prescription Houpo Sanwutang
Wenli SHI ; Qing TANG ; Huimin CHEN ; Jialei CAO ; Bingqi WEI ; Lan LIU ; Keke LIU ; Yun ZHANG ; Yujie CHANG ; Yihan LI ; Jingwen LI ; Bingxiang MA ; Lvyuan LIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):214-221
Houpo Sanwutang, included in the Catalogue of Ancient Classical Prescriptions (Second Batch), was first recorded in the Synopsis of Golden Chamber written by ZHANG Zhongjing from the Eastern Han dynasty and was modified by successive generations of medical experts. A total of 37 pieces of effective data involving 37 ancient Chinese medical books were retrieved from different databases. Through literature mining, statistical analysis, and data processing, combined with modern articles, this study employed bibliometrics to investigate the historical origin, composition, decoction methods, clinical application, and other key information. The results showed that the medicinal origin of Houpo Sanwutang was clearly documented in classic books. Based on the conversion of the measurements from the Han Dynasty, it is recommended that 110.4 g Magnolia Officinalis Cortex, 55.2 g Rhei Radix et Rhizoma, and 72 g Aurantii Fructus Immaturus should be taken. Magnolia Officinalis Cortex and Aurantii Fructus Immaturus should be decocted with 2 400 mL water first, and 1 000 mL should be taken from the decocted liquid. Following this, Rhei Radix et Rhizoma should be added for further decoction, and then 600 mL should be taken from the decocted liquid. A single dose of administration is 200 mL, and the medication can be stopped when patients restore smooth bowel movement. Houpo Sanwutang has the effect of moving Qi, relieving stuffiness and fullness, removing food stagnation, and regulating bowels. It can be used in treating abdominal distending pain, guarding, constipation, and other diseases with the pathogenesis of stagnated heat and stagnated Qi in the stomach. The above results provide reference for the future development and research of Houpo Sanwutang.
3.Protective mechanism of rhubarb decoction against inflammatory damage of brain tissue in rats with mild hepatic encephalopathy: A study based on the PI3K/AKT/mTOR signaling pathway
Guangfa ZHANG ; Yingying CAI ; Long LIN ; Lei FU ; Fan YAO ; Meng WANG ; Rongzhen ZHANG ; Yueqiao CHEN ; Liangjiang HUANG ; Han WANG ; Yun SU ; Yanmei LAN ; Yingyu LE ; Dewen MAO ; Chun YAO
Journal of Clinical Hepatology 2024;40(2):312-318
ObjectiveTo investigate the role and possible mechanism of action of rhubarb decoction (RD) retention enema in improving inflammatory damage of brain tissue in a rat model of mild hepatic encephalopathy (MHE). MethodsA total of 60 male Sprague-Dawley rats were divided into blank group (CON group with 6 rats) and chronic liver cirrhosis modeling group with 54 rats using the complete randomization method. After 12 weeks, 40 rats with successful modeling which were confirmed to meet the requirements for MHE model by the Morris water maze test were randomly divided into model group (MOD group), lactulose group (LT group), low-dose RD group (RD1 group), middle-dose RD group (RD2 group), and high-dose RD group (RD3 group), with 8 rats in each group. The rats in the CON group and the MOD group were given retention enema with 2 mL of normal saline once a day; the rats in the LT group were given retention enema with 2 mL of lactulose at a dose of 22.5% once a day; the rats in the RD1, RD2, and RD3 groups were given retention enema with 2 mL RD at a dose of 2.5, 5.0, and 7.5 g/kg, respectively, once a day. After 10 days of treatment, the Morris water maze test was performed to analyze the spatial learning and memory abilities of rats. The rats were analyzed from the following aspects: behavioral status; the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and the level of blood ammonia; pathological changes of liver tissue and brain tissue; the mRNA and protein expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) in brain tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the MOD group, the RD1, RD2, and RD3 groups had a significantly shorter escape latency (all P<0.01), significant reductions in the levels of ALT, AST, IL-1β, IL-6, TNF-α, and blood ammonia (all P<0.05), significant alleviation of the degeneration, necrosis, and inflammation of hepatocytes and brain cells, and significant reductions in the mRNA and protein expression levels of PI3K, AKT, and mTOR in brain tissue (all P<0.05), and the RD3 group had a better treatment outcome than the RD1 and RD2 groups. ConclusionRetention enema with RD can improve cognitive function and inflammatory damage of brain tissue in MHE rats, possibly by regulating the PI3K/AKT/mTOR signaling pathway.
4.Role of problem chain and course ideological and political cases teaching method in enhancing clinical medication ability research
Zhi-Hua QIN ; Long-Xi PENG ; Gao-Shuang LAN ; Xiao-Bin ZHANG ; Jiao-Jiao YANG ; Liang ZHU ; Xi-Long QIU ; Yun-Long CHEN
The Chinese Journal of Clinical Pharmacology 2024;40(11):1650-1653
Nowadays,with the continuous deepening and development of vocational education teaching reform,medical higher vocational education always takes moral education as the fundamental task.As an independent type of education,vocational education should always deepen the integration of industry and education and the integration of science and education.Through the teaching research of"problem chain+course ideological and political case",this study innovates the coordinated education team of drug nursing curriculum,the collaborative education method and the collaborative education evaluation,and improves the teaching effect.
5.Effects of radiation on pharmacokinetics
Jie ZONG ; Hai-Hui ZHANG ; Gui-Fang DOU ; Zhi-Yun MENG ; Ruo-Lan GU ; Zhuo-Na WU ; Xiao-Xia ZHU ; Xuan HU ; Hui GAN
The Chinese Journal of Clinical Pharmacology 2024;40(13):1996-2000
Radiation mainly comes from medical radiation,industrial radiation,nuclear waste and atmospheric ultraviolet radiation,etc.,radiation is divided into ionizing radiation and non-ionizing radiation.Studying the effects of ionizing and non-ionizing radiation on drug metabolism,understanding the absorption and distribution of drugs in the body after radiation and the speed of elimination under radiation conditions can provide reasonable guidance for clinical medication.This article reviews the effects of radiation on the pharmacokinetics of different drugs,elaborates the changes of different pharmacokinetics under radiation state,and discusses the reasons for the changes.
6.Application of Functionalized Liposomes in The Delivery of Natural Products
Cheng-Yun WANG ; Xin-Yue LAN ; Jia-Xuan GU ; Xin-Ru GAO ; Long-Jiao ZHU ; Jun LI ; Bing FANG ; Wen-Tao XU ; Hong-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(11):2947-2959
Plant natural products have a wide range of pharmacological properties, not only can they be used as plant dietary supplements to meet the nutritional needs of the human body in the accelerated pace of life, but also occupy an important position in the research and development of therapeutic drugs for the treatment of tumors, inflammation and other diseases, and have been widely accepted by the public due to their good safety. However, despite the above advantages of plant natural products, limiting factors such as low solubility, poor stability, lack of targeting, high toxicity and side effects, and unacceptable odor have greatly impeded their conversion to clinical applications. Therefore, the development of new avenues for the application of new natural products has become an urgent problem to be solved at present. In recent years, with the continuous development of research, various strategies have been developed to improve the bioavailability of natural products. Among them, nanocarrier delivery system is one of the most attractive strategies at present. In past studies, a large number of nanomaterials (organic, inorganic, etc.) have been developed to encapsulate plant-derived natural products for their efficient delivery to specific organs and cells. Up to now, nanotechnology has not only been limited to pharmaceutical applications, but is also competing in the fields of nanofood processing technology and nanoemulsions. Among the various nanocarriers, liposomes are the largest nanocarriers with the largest market share at present. Liposomes are bilayer nanovesicles synthesized from amphiphilic substances, which have advantages such as high drug loading capacity and stability. Attractively, the flexible surface of liposomes can be modified with various functional elements. Functionalized modification of liposomes with different functional elements such as antibodies, nucleic acids, peptides, and stimuli-responsive moieties can bring out the excellent drug delivery function of liposomes to a greater extent. For example, the modification of functional elements with targeting function such as nucleic acids and antibodies on the surface of liposomes can deliver natural products to the target location and improve the bioavailability of drugs; the modification of stimulus-responsive groups such as photosensitizers, magnetic nanoparticles, pH-responsive groups, and temperature sensitizers on the surface of liposomes can achieve controlled release of drugs, localized targeting, and synergistic thermotherapy. In addition to the above properties, by using functionalized liposomes to encapsulate natural products with irritating properties can also effectively mask the irritating properties of natural products, improve public acceptance, and increase the possibility of application of irritating natural products. There are various strategies for modifying liposomes with functional elements, and the properties of functionalized liposomes constructed by different construction strategies differ. The commonly used construction strategies for functionalized liposomes include covalent modification and non-covalent modification. These two types of construction strategies have their own advantages and disadvantages. Covalent modification has better stability than non-covalent modification, but its operation is cumbersome. With the above background, this review focuses on the three typical problems faced by plant natural products at present, and summarizes the specific applications of functionalized liposomes in them. In addition, this paper summarizes the construction strategies for building different types of functionalized liposomes. Finally, this paper will also review the opportunities and challenges faced by functionalized liposomes to enter clinical therapy, and explore the opportunities to overcome these problems, with a view to better realizing the precise control of plant nanomedicines, and providing ideas and inspirations for researchers in related fields as well as relevant industrial staff.
7.Detection of Amantadine by Label-free Fluorescence Method Based on Truncated Aptamer and Molybdenum Disulfide Nanosheet Signal Enhancement Strategy
Yi-Feng LAN ; Bo-Ya HOU ; Zhi-Wen WEI ; Wen LIU ; Chao ZHANG ; Ya-Hui ZUO ; Ke-Ming YUN
Chinese Journal of Analytical Chemistry 2024;52(2):208-219,中插4-中插7
Amantadine(AMD)residue can accumulate in organisms through the food chain and cause serious harm to human body.AMD can specifically bind to AMD specific aptamer and cause its conformation to change from a random single strand to a stem-loop structure.To avoid the influence of excess nucleotides on binding of aptamer to AMD,the truncation of the AMD original aptamer J was optimized by retaining an appropriate stem-loop structure,and a new type of truncation aptamers was developed in this work.By comparing the truncated aptamer with the original aptamer,it was found that the truncated aptamer J-7 had better affinity and specificity with AMD.The detection limit of AMD was 0.11 ng/mL by using J-7 as specific recognition element and molybdenum disulfide nanosheet(MoS2Ns)as signal amplification element.The developed method base on truncated aptamer J-7 was used for detection of AMD in milk,yogurt and SD rat serum samples for the first time with recoveries of 86.6%-108.2%.This study provided a reference for truncating other long sequence aptamers and provided a more sensitive detection method for monitoring AMD residues in food.
8.Risk factors for pulmonary infection after cardiac surgery:a Meta-analysis
Ya-Xin LIU ; Yun-Lan JIANG ; Jie LI
Chinese Journal of Infection Control 2024;23(2):189-194
Objective To systematically evaluate the influencing factors for pulmonary infection after cardiac sur-gery.Methods Literatures were retrieved from PubMed,Embase,Web of Science,the Cochrane Library,CBM,Wanfang,CNKI and VIP databases.The retrieval time was from the establishment of databases to November 22,2022.Meta-analysis was performed with RevMan 5.4 and Stata 15.0 softwares.Results A total of 20 literatures were included in the analysis.Meta-analysis showed that age(≥65 years),mechanical ventilation time(≥5 days),smoking,acute renal damage,perioperative blood transfusion,operation time(≥240 minutes),secondary thora-cotomy,and oxygenation index(PaO2/FiO2≤300 mmHg)were risk factors for postoperative pulmonary infection.Conclusion The existing evidence shows that all of the above 8 factors are risk factors for pulmonary infection after cardiac surgery,which can provide a theoretical basis for health care workers to prevent and treat infection.
9. Mechanism of action of formononetin in alleviating allergic asthma through DRP1-NLRP3 signaling pathway
Mu CHEN ; Qiao-Yun BAI ; Yi-Lan SONG ; Jiao CHEN ; Yong-De JIN ; Guang-Hai YAN ; Jiao CHEN ; Yong-De JIN ; Qiao-Yun BAI ; Yi-Lan SONG ; Guang-Hai YAN
Chinese Pharmacological Bulletin 2024;40(3):529-536
Aim To investigate the mechanism by which formononetin (FN) inhibits mitochondrial dynamic-related protein 1 (DRP1) -NLRP3 axis via intervening the generation of ROS to reduce allergic airway inflammation. Methods In order to establish allergic asthma mouse model, 50 BALB/c mice aged 8 weeks were divided into the control group, model group, FN treatment group and dexamethasone group after ovalbumin (OVA) induction. Airway inflammation and collagen deposition were detected by HampE and Masson staining. Th2 cytokines and superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and IgE levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA, ROS in BEAS-2B cells was assessed by DCFH-DA staining, DRP1 expression in lung tissue and BEAS-2B cells was detected by immunohistochemistry and immunofluorescence, and the DRP1-NLRP3 pathway was analyzed by immunoblotting. Results FN treatment could effectively ameliorate the symptoms of asthmatic mouse model, including reducing eosinophil accumulation, airway collagen deposition, decreasing Th2 cytokine and IgE levels, reducing ROS and MDA production, increasing SOD and CAT activities, and regulating DRP1-NLRP3 pathway-related protein expression, thereby relieving inflammation. Conclusion FN ameliorates airway inflammation in asthma by regulating DRP1-NLRP3 pathway.
10.Advances in the association between Helicobacter pylori infection and non-alcoholic fatty liver disease as well as its potential mechanisms
Guang-Yao ZHAO ; Long-Yun WU ; Qiao-Yun XIA ; Xiao-Lan LU
Fudan University Journal of Medical Sciences 2024;51(6):1002-1008
Helicobacter pylori(HP),a well-established carcinogenic factor,is implicated in the pathogenesis of gastric ulcer,gastric cancer,and other related diseases.Recent studies have unveiled a significant association between HP infection and an increased prevalence of non-alcoholic fatty liver disease(NAFLD).Furthermore,it has been observed that eradication of HP can ameliorate metabolic disorders and relieve NAFLD.Some studies have explored the possible mechanism,which may be related to energy metabolism disorder and gut microbiota imbalance caused by HP.This review outlined the current research status regarding the association between HP and NAFLD,as well as elucidated the potential mechanisms through which HP promoted the onset and progression of NAFLD.

Result Analysis
Print
Save
E-mail